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ABSTRACT
◥

The tumor immune microenvironment (TIME) is commonly
infiltrated by diverse collections of myeloid cells. Yet, the com-
plexity of myeloid-cell identity and plasticity has challenged
efforts to define bona fide populations and determine their
connections to T-cell function and their relationship to patient
outcome. Here, we have leveraged single-cell RNA-sequencing
analysis of several mouse and human tumors and found that
monocyte–macrophage diversity is characterized by a combina-
tion of conserved lineage states as well as transcriptional pro-

grams accessed along the differentiation trajectory. We also
found in mouse models that tumor monocyte-to-macrophage
progression was profoundly tied to regulatory T cell (Treg)
abundance. In human kidney cancer, heterogeneity in macro-
phage accumulation and myeloid composition corresponded to
variance in, not only Treg density, but also the quality of infil-
trating CD8þ T cells. In this way, holistic analysis of monocyte-
to-macrophage differentiation creates a framework for critically
different immune states.

Introduction
A key component of most immune responses, including those

to cancers, are mononuclear phagocyte cell populations, which
share common features of phagocytosis, tissue repair, and immuno-
regulation but diverge in functional specialization. Conventional
dendritic cells (cDC) are positioned in tissues to initiate and sustain
adaptive T-cell responses (1), whereas macrophages engage in high
rates of phagocytosis and tissue remodeling (2). Self-renewing tissue-
resident macrophages are seeded during embryonic development (3),
whereas inflammatory stimuli prompt infiltration of adult hemato-
poietic stem cell–derived monocytes that give rise to tumor
macrophages (4–7). These monocyte-derived macrophages preferen-
tially accumulate as tumors progress (8) and may predominate in
regulating the ongoing antitumor T-cell response (9).

Macrophages consist of numerous subset populations that have
been identified across tissues (10–13). Therapeutic blockade of key
epigenetic and signaling pathways has demonstrated their amenability
to transcriptional reprogramming (14), but how phenotypic diversity
arises remains poorly understood. Recruited bloodborne monocytes
exhibit plasticity in differentiation potential and can acquire features
of macrophages and/or DCs depending on the inflammatory
setting (5, 6, 10, 15–17). In addition, early studies demonstrated that
macrophage exposure to type 1– or type 2–associated cytokines
induces “M1” or “M2” cellular programs, respectively, and a model
was put forth in which myeloid cells are polarized to be proinflam-
matory (“M1”) or anti- (“M2”) inflammatory (18–20). Although this
nomenclature was thereafter understood to require nuance to account
for additional plasticity (21), it remains undetermined whether these
binary programs are applicable to describe tumor macrophage dif-
ferentiation in vivo.

Myeloid phenotypic diversity has challenged efforts to utilize
myeloid populations as biomarkers for patient treatment options and
outcome. cDCs are critical for coordinating antitumor T-cell
immunity (22–25) and higher cDC abundance is broadly associated
with improved cancer patient survival, although additional tumor
immune microenvironment (TIME) features may inform functional-
ity (23, 24, 26). In contrast, macrophages have largely been considered
to be protumorigenic (2, 14) andmonocytes have often been described
as myeloid-derived suppressor cells (MDSC; ref. 27). Yet, several
studies have indicated thatmacrophages are not consistently a negative
predictor of patient prognosis (28–31), and increased levels of circu-
lating monocytes were unexpectedly linked to patient responsiveness
to immune checkpoint blockade (ICB; ref. 32). These contrary findings
speak to the need for improved resolution of myeloid-cell categori-
zation and phenotype to dissect heterogenous responses among
patients with cancer.

Using single-cell RNA sequencing (scRNA-seq), we uncovered
transcriptional heterogeneity among tumor-infiltrating myeloid cells
and distinguished monocyte and macrophage lineage- and activation-
induced programs shared between multiple mouse tumor models and

1Department of Pathology and ImmunoX, University of California, San Francisco,
San Francisco, California. 2UCSF CoLabs, University of California, San Francisco,
San Francisco, California. 3UCSF Immunoprofiler Initiative, University of
California, San Francisco, San Francisco, California. 4Sorbonne Universit�e,
INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses Cimi-Paris,
Paris, France. 5Aix Marseille Univ, CNRS, INSERM, CIML, Centre d’Immunologie
de Marseille-Luminy, Marseille, France. 6Department of Urology, University of
California, San Francisco, San Francisco, California.

Note: Supplementary data for this article are available at Cancer Immunology
Research Online (http://cancerimmunolres.aacrjournals.org/).

A.M. Mujal and A.J. Combes contributed equally to this article.

Current address for A.M. Mujal: Immunology Program, Memorial Sloan Kettering
Cancer Center, New York, New York.

Corresponding Author: Matthew F. Krummel, Department of Pathology and
ImmunoX, University of California, San Francisco, 513 Parnassus Ave, San
Francisco, CA 94143. E-mail: matthew.krummel@ucsf.edu

Cancer Immunol Res 2022;10:403–19

doi: 10.1158/2326-6066.CIR-21-0588

�2022 American Association for Cancer Research

AACRJournals.org | 403

D
ow

nloaded from
 http://aacrjournals.org/cancerim

m
unolres/article-pdf/10/4/403/3108293/403.pdf by C

D
L - U

niversity of C
alifornia - San Francisco user on 11 April 2022

http://crossmark.crossref.org/dialog/?doi=10.1158/2326-6066.CIR-21-0588&domain=pdf&date_stamp=2022-3-17
http://crossmark.crossref.org/dialog/?doi=10.1158/2326-6066.CIR-21-0588&domain=pdf&date_stamp=2022-3-17


human kidney cancer samples. Monocyte differentiation is dynami-
cally regulated, and we found that regulatory T cell (Treg) density was
one immunoregulatory axis capable of modulating macrophage den-
sity. Further comprehensive analysis of key myeloid populations
revealed distinct network connections between different myeloid-
cell types and T-cell subsets, including Tregs and effector T cells. This
is consistent with an archetypal organization of immune systems in
tumors—collections of cell types thatmove together asmodules (33)—
and improved classification of patients such that we could identify
those with effective antitumor T-cell responses.

Materials and Methods
Mice

The following mice were housed and/or bred under specific
pathogen-free conditions at the University of California, San Fran-
cisco Animal Barrier Facility: C57BL/6J (The Jackson Laboratory),
MMTV-PyMT-mCherry-OVA transgenic (34), and Foxp3-DTR
(The Jackson Laboratory). All mice were handled in accordance
with NIH and American Association of Laboratory Animal Care
standards, and experiments were approved by the Institutional
Animal Care and Use Committee of the University of California,
San Francisco (San Francisco, CA).

Human tumor samples
Renal cell carcinoma (RCC), melanoma, and head and neck tumor

samples were transported from various cancer operating rooms or
outpatient clinics. All patients provided informed written consent to
the UCSF IPI clinical coordinator group for tissue collection under a
UCSF Institutional Review Board (IRB)-approved protocol (UCSF
IRB# 20-31740) in accordance with the Declaration of Helsinki guide-
lines. Patients were selected without regard to prior treatment and 21
RCC (all primary tumors), 22melanoma (20 primary and 2metastasis
tumors), and four head and neck tumors (all primary tumors) were
collected. All samples were defined as primary tumor or metastasis by
pathology assistants. Samples were obtained after surgical excision
with biopsies taken to confirm the presence of tumor cells. Freshly
resected samples were placed in ice-cold Dulbecco’s Phosphate
Buffered Saline (DPBS; Thermo Fisher Scientific, catalog no.
14190144) or Leibovitz’s L-15 medium (Thermo Fisher Scientific,
catalog no. 11415064) in a 50 mL conical tube and immediately
transported to the laboratory for sample labeling and processing. As
described below (Human Tissue Processing and Flow Cytometry
Analysis), the whole tissue underwent digestion and processing to
generate a single-cell suspension. In the event that part of the tissue
was sliced and preserved for imaging analysis, the remaining
portion of the tissue sample was used for flow cytometry analysis.

Tumor cell lines
B16-F10 cells (ATCC, CRL-6475) were purchased in 2015 and stock

vials were generated from an initial thaw. Cells in use were taken
from early passages and maintained consistent and homogenous
morphologic characteristics, during which time they were tested for
Mycoplasma. B16-F10-ZsGreen was previously generated in our labo-
ratory as described previously (35) and tested for maintained expres-
sion of ZsGreen by flow cytometry. After thawing, tumor cells were
cultured at 37�C in 5% CO2 in DMEM (Thermo Fisher Scientific,
catalog no. A4192101), 10% FCS (Benchmark, catalog no. 100-106),
penicillin, streptomycin, and L-Glutamine (Thermo Fisher Scientific,
catalog no. 10378016). Cells were generally cultured for 2 to 5 days
(0–1 passages) before use for subcutaneous injection.

Mouse tumor cell injections and growth
Prior to injection, adherent B16-F10 or B16-ZsGreen tumor cells

were dissociatedwith 0.05%Trypsin-EDTA (Thermo Fisher Scientific,
catalog no. 25300120) and washed 2–3� with DPBS (Thermo Fisher
Scientific, catalog no. 14190144). A total of 1.0 � 105 to 2.5 � 105

cells were resuspended in DPBS and mixed 1:1 with Matrigel GFR
(Corning, catalog no. 356231).Micewere injected subcutaneouslywith
a volume of 50 mL either unilaterally or bilaterally depending on
the experimental setup. Tumor tissue was harvested approximately
12 to 16 days later.

MMTV-PyMT-mCherry-OVA transgenic mice were bred and
genotyped for the transgene by PCR. Spontaneous tumor growth
was monitored by measuring with electronic calipers. Tumors were
harvested when the mice were approximately 20 to 30 weeks of age
such that palpable tumors had developed but had not exceeded a
size of 100 mm2.

In vivo mouse treatments
To deplete Tregs, Foxp3-DTR and control mice were injected

intraperitoneally with 500 ng of unnicked diptheria toxin (List Bio-
logics, catalog no. 150). Mice were typically injected 9, 10, and 12 days
following initial inoculation with tumor cells (see Mouse Tumor Cell
Injections and Growth).

For specified experiments, wild-type mice were injected intraper-
itoneally 7, 9, 10, 11, and 13 days following tumor injectionwith 250mg
of anti-mouse CTLA-4 IgG2c (modified clone 9D9, Bristol-Myers-
Squibb), mouse IgG2C isotype, anti-mouse CTLA-4 IgG1 (modified
clone 9D9, Bristol Myers Squibb), or mouse IgG1 isotype.

Mouse tissue processing and flow cytometry analysis
Mouse tumor tissue was harvested and enzymatically digested with

0.2 mg/mL DNase I (Sigma-Aldrich, catalog no. D5025), 100U/mL
Collagenase I (Worthington Biochemical, catalog no. LS004197), and
500 U/mL Collagenase Type IV (Worthington Biochemical, catalog
no. LS004189) for 30 minutes at 37�C while under constant agitation.
Blood was collected via cardiac puncture from mice that were eutha-
nized by overdose with 2.5% Avertin. Blood samples were treated with
175 mmol/L NH4Cl for 5 minutes at room temperature to lyse red
blood cells.

Samples were filtered, washed with stain media (DPBS, 2% FCS),
and resuspended in stain media. Cells from this single-cell suspension
were washed with DPBS and stained with Zombie NIR fixable viability
dye (BioLegend, catalog no. 423106) for 30 minutes at 4�C. Cells were
washed and resuspended in stain media containing anti-CD16/32
(BioXCell, catalog no. BE0307), 2% rat serum (Thermo Fisher Scien-
tific, catalog no. 10710C), 2% Armenian hamster serum (Innovative
Research, catalog no. IGHMA-SER), and antibodies against surface
proteins of interest. Cells were stained for 30 minutes at 4�C. In some
experiments, cells were then washed and stained for intracellular
protein levels, for which they were fixed, permeabilized, and stained
according to BD Cytofix/Cytoperm Kit (BD Biosciences, catalog no.
554655) or the FoxP3/Transcription Factor Staining Buffer Set
(Thermo Fisher Scientific, catalog no. 00-5523-00).

The following antibodies were from BioLegend: anti-mouse CD45
(clone A20, catalog no. 110727), anti-mouse Ly-6C (clone HK1.4,
catalog no. 128037), anti-mouse CD11b (clone M1/70, catalog no.
101257), anti-mouse CD11c (clone N418, catalog no. 117339), anti-
mouse MHC-II (clone M5/114.15.2, catalog no. 107622), anti-mouse
F4/80 (clone BM8, catalog no. 123135, 123107, or 123131), anti-mouse
CD24 (clone M1/69, catalog no. 101822), anti-mouse Ly-6G (clone
IA8, catalog no. 127645), anti-mouse NK1.1 (clone PK136, catalog no.
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108749), anti-mouse CD90.2 (clone 30-H12, catalog no. 105331),
anti-mouse/human CD45R/B220 (clone RA3-6B2, catalog no.
103246), anti-mouse CD301b (clone URA-1, catalog no. 146814
or 146803), anti-mouse CD64 (clone X54-5/7.1, catalog no.
139306), anti-mouse CD127 (clone A7R34, 135031). The following
antibodies were from BD Biosciences: anti-mouse Siglec-F (clone
E50-2440, catalog no. 740956), anti-mouse CD106 (clone 429, catalog
no. 745672). The following antibodies were from R&D: anti-mouse/
human ARG1 (polyclonal, catalog no. IC5868F), normal sheep IgG
(polyclonal, catalog IC016F). The following antibodies were from
Thermo Fisher Scientific: anti-mouse FoxP3 (clone FJK-16s, catalog
no. 48-5773-82).

Following staining, cells were washed, resuspended in stain media,
and analyzed on a BD Biosciences Fortessa or sorted with a BD
Biosciences FACSAria Fusion. Flow cytometry data were analyzed
using FlowJo software (BD Biosciences, version 9 or 10).

Human tissue processing and flow cytometry analysis
Human tumor or metastatic tissue was thoroughly chopped with

surgical scissors and transferred to gentleMACS C Tubes (Miltenyi
Biotec) containing 20 mL/mL Liberase TL (5 mg/mL, Roche, catalog
no. 5401020001) and 50 U/mL DNAse I (Roche, catalog no.
10104159001) in RPMI1640 (Thermo Fisher Scientific, catalog no.
11875093) per 0.3 g tissue. gentleMACS C Tubes were installed onto
the gentleMACS Octo Dissociator (Miltenyi Biotec) and incubated for
45minutes according to themanufacturer’s instructions. Samples were
then quenched with 15 mL of sort buffer (DPBS, 2% FCS, 2 mmol/L
EDTA), filtered through 100 mm filters, and spun down. Red blood cell
lysis was performed with 175 mmol/L NH4Cl if needed. Cells were
incubated with Human FcX (BioLegend, catalog no. 422301) to
prevent nonspecific antibody binding. Cells were then washed in
DPBS and incubated with Zombie Aqua Fixable Viability Dye
(Thermo Fisher Scientific, catalog no. L34957). Following viability
dye, cells were washed with sort buffer and incubated with cell surface
antibodies that had been diluted in the BV stain buffer (BD
Biosciences, catalog no. 563794) for 30 minutes on ice. Cells were
subsequently fixed in either Fixation Buffer (BD Biosciences, catalog
no. 554655) or in Foxp3/Transcription Factor Staining Buffer Set
(Thermo Fisher Scientific, catalog no. 00-5523-00) if intracellular
staining was required.

The following antibodies were from BD Biosciences: anti-human
HLA-DR (clone G46-6, catalog no. 564040), anti-human CD56
(clone NCAM16.2, catalog no. 564448), anti-human CD127 (clone
HIL-7R-M21, catalog no. 563225), anti-human CD25 (clone 2A3,
catalog no. 340939), anti-human CD45RO (clone UCHL1, catalog no.
561889), anti-human PD-1 (clone EH12, catalog no.563789), anti-
human CTLA-4 (clone BNI3, catalog no. 565931), and anti-human
CD64 (clone 10.1, catalog no. 564425). The following antibodies were
from Thermo Fisher Scientific: anti-human CD45 (clone HI30,
catalog no. 47-0459-42), anti-human CD3e (clone OKT3, catalog
no. 46-0037-42), anti-human FoxP3 (clone 236A/E7, catalog no. 25-
4777-41), anti-human Ki-67 (SolA15, catalog no. 11-5698-82), anti-
human CD19 (clone H1B19, catalog no. 45-0199-42), anti-human
CD20 (clone 2H7, catalog no. 45-0209-42), anti-human CD56 (clone
CMSSB, catalog no. 46-0567-42), and anti-human CD11c (clone 3.9,
catalog no. 56-0116-42). The following antibodies were from BioLe-
gend: anti-human CD4 (clone S3.5, catalog no. 100455), anti-human
CD8a (clone RPA-T8, catalog no. 301039), anti-human CD38 (clone
HIT2, catalog no. 303523), anti-human CD16 (clone 3G8, catalog no.
302039), CD1C/BDCA-1 (clone L161, catalog no. 331515), anti-
human CD14 (clone M5E2, catalog no. 301837), anti-human CD304

(clone 12C2, catalog no. 354503), and streptavidin. Anti-human
BDCA-3 (clone AD5-14H12, catalog no. 130-098-843) was purchased
from Miltenyi Biotec.

Stained cells were washed and analyzed on a BD Biosciences
Fortessa or sorted with a BD Biosciences FACSAria Fusion. Flow
cytometry data were analyzed using FlowJo software (BD Biosciences,
version 10.6). Clustering and heatmap analyses were performed using
Morpheus (Broad Institute).

scRNA-seq data generation
Mouse B16 samples were generated over two independent

experiments. Samples were pooled from at least 5 mice per
experiment to ensure representation across a cohort of tumor-
bearing mice. In the first experiment, CD45þCD90�B220�NK1.1�

Ly6G� cells that were Ly6C�MHC-IIþ or Ly6CþCD11bþ were sorted
as one bulk myeloid sample. Individual monocyte (CD45þCD90�

B220�NK1.1�Ly6G�Ly6CþCD11bþ) and macrophage (CD45þ

CD90�B220�NK1.1�Ly6G�Ly6C�MHC-IIþF4/80þCD24loCD11clo/hi)
populations from these tumors were also sorted. Each of these
samples was processed separately, but in parallel, for scRNA-seq
analysis. In the second experiment, B16 tumor myeloid cells
(CD45

þ
CD90�B220�NK1.1�Ly6G� cells that were CD11bþ and/

or CD11cþ) were sorted from control or Foxp3-DTR mice. Blood
myeloid cells (CD45þCD90B220�NK1.1�Ly6G� cells that were
CD11bþ and/or CD11cþ) were also sorted from these B16
tumor-bearing wild-type mice. Each of these three samples was
processed separately, but in parallel, for scRNA-seq analysis. In a
subsequent experiment, myeloid cells (CD45þCD90�B220�NK1.1�

Ly6G�CD11bþ and/or CD11cþ) from a mouse PyMT tumor were
sorted. In addition, myeloid cells (CD45þCD3e�CD19�CD20�

CD56�HLA-DRdim/hi) from a total of one RCC, four head and
neck, and six melanoma biopsies were sorted and processed indi-
vidually as they became available.

Once sorted, cells were resuspended at a concentration of 1 � 103

cells/mL in media (DPBS, 0.04% BSA) and loaded onto the Chro-
mium Controller (10� Genomics). Samples underwent single-cell
encapsulation and cDNA library preparation using the Chromium
Single Cell 30 v1 or v2 Reagent Kits (10� Genomics, catalog no.
120237). The cDNA library was sequenced on an Ilumina HiSeq
4000 or Illumina Novaseq.

scRNA-seq data processing
Sequencing data were processed using the 10� Genomics Cell

Ranger V1.2 pipeline. Fastq files were generated from Ilumina bcl
files with the Cell Ranger subroutine mkfastq. Fastq files were then
processed with Cell Ranger’s count to align RNA reads against UCSC
mm10 or GRCh38 genomics for mouse and human cells, respectively,
using the aligner STAR (36). Redundant unique molecular identifiers
(UMI) were filtered, and a gene–cell barcode matrix was generated
with count. Mkfastq and count were run with default parameters.

For mouse B16 tumor samples, the gene–cell barcode matrix was
passed to the R software package Seurat (v2.3.0; ref. 37) for all
downstream analyses. Genes that were expressed in at least three cells
were included. Cells that did not express at least 200 genes were
excluded, as were those that contained >5% reads associated with cell-
cycle genes (38, 39). For mouse PyMT and human tumor samples, raw
feature–barcode matrices were loaded into Seurat (v3.1.5; ref. 40) and
genes with fewer than three UMIs were dropped from the analyses.
Matrices were further filtered to remove events with greater than 20%
percent mitochondrial content, events with greater than 50% ribo-
somal content, or events with fewer than 200 total genes. The cell-cycle
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state of each cell was assessed using a published set of genes associated
with various stages of human mitosis (41).

Using Seurat’s ScaleData function, read counts were log2 trans-
formed and scaled using each cell’s proportion of cell-cycle genes as
a nuisance factor. A set of highly variable genes was generated by
Seurat’s FindVariableGenes function, which were used for principal
component analysis (PCA). Genes associated with principal com-
ponents (selected following visualization with scree plots) were used
for graph-based cluster identification and dimensionality reduction
using t-distributed stochastic neighbor embedding (t-SNE) or Uni-
form Manifold Approximation and Projection (UMAP) analysis.
Seurat’s FindAllMarkers function was used for subsequent cluster-
based analyses, including cluster marker identification and diffe-
rentially expressed (DE) gene analyses.

scRNA-seq signature generation
To generate mouse monocyte- and macrophage-specific gene sig-

natures, sorted monocyte, CD11clo macrophage, and CD11chi mac-
rophage samples were aggregated, log2 transformed, and scaled using
Seurat. DE gene analysis was performed using FindMarkers with the
parameters log N fold change > 1.5 and a min.pct of 0.25. Genes were
selected by ranked fold change and the criteria that min.pct1/min.pct2
> 1.5. Genes used for cell-cycle regression analysis were excluded. The
top 10 genes (or fewer if less remained) were median normalized and
aggregated, scaled 0–1, and plotted on specific t-SNE plots.

Gene signatures for cellular programs such as metabolism (42),
“M1” and “M2” polarization (43), and MHC-II–associated genes
(GSEA, REACTOME_MHC_CLASS_II_ANTIGEN_PRESENTA-
TION), previously published cell types (44, 45), and cell populations
identified here were generated by taking the mean of log-normalized
expression for a particular set of genes related to the specific pathway or
phenotype. To visualize the distribution of these scores across cells, we
binarized the distribution of the score at the 70th percentile unless
specified otherwise and overlaid on the calculated t-SNE coordinates.

For correlation analysis of “M1” and “M2” genes, the expression of
each gene in the signatures was calculated for each B16 tumor
Csf1rþMafbþ cluster cell and binarized at the median. A cross-
correlation gene–gene matrix was obtained using the R cor function
with method ¼ “pearson.”

scRNA-seq sample aggregation
Pairwise comparison analyses were performed between B16 tumor

myeloid-cell clusters from wild-type and Treg-depleted mice. For this,
one sample from wild-type mice and one sample from Foxp3-DTR
mice were used, along with an additional wild-type sample that had
been generated in a previous independent experiment. The 3 objects
were first transformed from Seurat v2 to Seurat v3. The raw UMI
counts were renormalized using person residuals from “regularized
negative binomial regression,” with sequencing depth a covariate
in a generalized linear model via the R sctransform package (46).
Pairwise “anchor” cells were identified between the 3 objects using the
original wild-type mouse sample as a reference via the Seurat FindIn-
tegrationAnchors function. Briefly, each pair of samples was reduced to
a lower dimensional space using diagonalized canonical correlation
analysis using the top 3,000 genes with the highest dispersions. The
canonical correlation vectors were normalized using L2-normaliza-
tion. Multiple nearest neighbors across datasets were identified for
each cell in each dataset and cell–cell similarities are used as anchors to
integrate the datasets together using the Seurat IntegrateData function.

For the integration of all human samples, the individually
processed samples were normalized, and variance stabilized using

negative binomial regression via the scTransform method offered
by Seurat (46). Counts matrices were merged into a single Seurat
object and the batch (or library) of origin was stored in the metadata
of the object. The log-normalized counts were reduced to a lower
dimension using PCA and the individual libraries were aligned in
the shared PCA space in a batch-aware manner (each individual
library was considered a batch) using the Harmony algorithm (47).
The resulting Harmony components were used to generate a batch-
corrected UMAP, and to identify clusters of transcriptionally
similar cells across each of the 11 samples.

scRNA-seq pseudotime analysis
Raw UMI counts from the cleaned and processed Seurat objects for

the control and Treg-depleted mouse experiment were extracted and
coerced into Monocle2 (48, 49). CellDataSet objects were generated,
normalizing the data using a negative binomial distribution with fixed
variance (negbinom.size). Each object was independently processed to
identify a pseudotime trajectory. Briefly, each object was processed to
estimate per-cell coverage and sequencing depth (estimateSizeFactors)
and gene dispersions (estimateDispersions). Cells were further filtered
to retain high-quality cells with ≥500 genes and genes were filtered to
retain only those in at least 10 cells. The dataset was reduced to two
dimensions using the DDRTree algorithm and the marker genes that
differentiated the Ly6c2þHpþ monocytes and C1qaþ macrophage
clusters from other cell types were used to guide the trajectory
inference. Relative pseudotime was obtained through a linear trans-
formation relative to the cells with the lowest and highest pseudotimes
(1-min_pseudotime)/max_pseudotime. The “wave” plots were con-
structed using the Seurat LogNormalized counts and the relative
pseudotime described above for the top five genes per cluster as
identified by scRNA-seq.

Human samples were analyzed with Monocle3 (48, 49), and the
cell_data_set object along with the batch-corrected PCA and UMAP
embeddings were imported directly from the Seurat object. Each cell-
specific trajectory was inferred by reverse embedding the UMAP
coordinates using the DDRTree method. Relative pseudotime was
obtained as described for the mouse tumor samples.

The Cancer Genome Atlas survival analyses
Tumor RNA-seq counts and transcripts-per-million (TPM) values

for 985 kidney renal clear cell carcinoma (KIRC) samples from the Toil
recompute data in The Cancer Genome Atlas (TCGA) Pan-Cancer
cohort (50) were downloaded from the UCSC Xena browser (51). A
gene signature score for each patient was calculated using the gene
signature score method below. The feature gene signature scores were
calculated using an m � n matrix where m represented the TPM
normalized log2 counts per million expression of the feature signature
genes and n represented the selected sample set (52). The expression of
each gene was converted to percentile ranks across the samples using
the SciPy Python module (53). The top and bottom 30 percentile were
then used to define low and high patients for each respective signature
unless otherwise noted.

Statistical analysis and data visualization
Comparisons between groups were analyzed usingGraphPad Prism

software. Experimental group allocation was determined by genotype
or by random designation when all wild-type mice were used. Error
bars represent mean � SEM calculated with Prism unless otherwise
noted. Comparisons between two groups were analyzed with Student t
test. For statistical measures between more than two groups, one-way
ANOVA was performed unless otherwise noted. Nonsignificant
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comparisons are not shown. Investigators were not blinded to exper-
iment group assignment during experimental data generation or
analyses. The R packages Seurat and ggplot2 were used to generate
figures.

Data availability
The expression matrices for the scRNA-seq samples reported in

this article can be found with the following Gene Expression
Omnibus accession numbers: GSE188548, GSE184096, GSE159913,
and GSE184398. Code used to generate the scRNA-seq analyses
is included on Github (https://github.com/UCSF-DSCOLAB/
mujal_et_al_MonoMac_2021).

Results
Mouse B16 tumors harbor a diversity of myeloid states

Subcutaneous implantation of B16 melanoma cells is a well-
established mouse tumor model with abundant infiltration of mono-
cytes, macrophages, and cDCs (23). To study these cells along their
differentiation trajectories, we used conventional markers to sort bulk
myeloid populations, along with reference populations of Ly6Cþ

monocytes and two tumor-associated macrophage (TAM) popula-
tions, distinguished on the basis of level of expression of CD11c and
MHC-II (Fig. 1A; Supplementary Fig. S1A; ref. 23). Each of these
samples was then subjected to scRNA-seq analysis.

Within the bulk myeloid population, t-SNE clustering yielded eight
transcriptionally distinct cell populations (Fig. 1B; Supplementary
Fig. S1B and S1C), including three Flt3þKitþ cDC populations (clus-
ters 4, 6, 7), whichweremarked by signatures specific to cDC1s, cDC2s,
and conserved cDC activation programs (Supplementary Fig. S1D;
Supplementary Table S1; refs. 23, 24, 26). The remaining myeloid cells
(clusters 0, 1, 2, 3, 5) broadly expressed Csf1r and Mafb (Fig. 1C),
indicative of monocytes and macrophages. In addition, these cells
broadly expressed Ccr2 and modest but appreciable levels of Cx3cr1
(Supplementary Fig. S1E). Having focused on the stimulatory capacity
of cDCs in previous work (23, 24, 45), here we focused on the diversity
of monocytes and macrophages as it related to the TIME.

To align transcriptional cell-type categorization with flow cytome-
try analysis, we generated cell type–specific gene signatures from the
scRNA-seq analysis of the FACS-sorted monocytes and TAMs
(Fig. 1A; Supplementary Fig. S1F). When applied (Fig. 1D), these
indicated that four Csf1rþMafbþ populations (clusters 0, 1, 2, 5)
expressed monocyte-specific genes. The four monocyte populations
expressed Ly6c2, but varied in levels of other monocyte-associated
genes (e.g.,Hp, Chil3) and, as found in cluster 0, also expressed TAM-
associated genes (e.g., H2-Ab1, C1qa, Ms4a7; Fig. 1E and F). Mono-
cyte-like clusters were differentiated from one another by cellular
activation programs. For example, cluster 1 (“IFN-responsive”) was
specifically enriched for IFN-inducible genes such asCxcl10,Gbp2, and
IFIT-family members. Cluster 2 (“stress-responsive”) cells expressed
Arg1 and were enriched for cellular stress processes, including oxi-
dative stress–responsive genes andHSP genes such asHmox1,Hspa1a,
Hilpda,Bnip3, Ero1L, andNdrg1 (Fig. 1F; Supplementary Fig. S1G). In
contrast to the heterogeneity observed amongst monocytes, signatures
for both populations of TAMs localized within cluster 3 (Fig. 1D).

We applied pseudotime analysis (48) to generate a model of tumor
monocyte-to-macrophage differentiation (Fig. 1G andH; Supplemen-
tary Fig. S1H). This model placed cluster 5 Ly6c2þHpþmonocytes and
cluster 3C1qaþTAMs at opposite ends of a linear trajectory, consistent
with our expectations. Cluster 0 monocytes occupied the continuum
between them and expressed a combination of both monocyte- and

TAM-associated gene signatures such that we designated these cells
“Intermediate monocytes” (“Mono-Int”). Kinetic analysis of cluster-
enriched genes confirmed gradual downregulation of Ly6c2þHpþ

monocyte-associated genes and upregulation of “Mono-Int”- and
TAM-associated genes along the pseudotime trajectory (Fig. 1I). This
transcriptional model thus supported a framework of progressive
monocyte-to-TAM differentiation, in which Ly6C downregulation is
paired with up-regulation of CD64, MHC-II, and F4/80 (Supplemen-
tary Fig. S1I and S1J; ref. 15). In contrast, IFN- and stress-responsive
cells occupied distinct branches that diverged from the dominant
differentiation trajectory at intermediate timepoints (Fig. 1H and I;
Supplementary Fig S1H).

Heterogeneous acquisition of “stress-” and “IFN-responsive”
cellular programs

To gain higher resolution on the differentiation trajectories within
the monocyte/macrophage lineage, we performed cluster analysis on
the sorted monocyte and TAM samples. Sorted monocytes expressed
Ly6c2 and contained clusters similar to those identified within the bulk
myeloid-cell sample (Fig. 2A; Supplementary Fig S2A), indicating that
these cells may not consist purely of early-stage monocytes but also
include some cells that have acquired macrophage attributes (Supple-
mentary Fig. S1J). Cluster analysis of CD11clo and CD11chi TAMs,
however, resolved diversity beyond the C1qaþ TAM signature
(Fig. 2B; Supplementary Fig. S2B and S2C) including identifying
clusters enriched for cell cycle–related genes, and an Mgl2þ TAM
subset that expressed immune modulators such as Ccl6, Il1b, and
Retnla as compared with the C1qaþ cluster, which more highly
expressed genes such as Ms4a7. Although these cells had not formed
a distinct population in our original analysis of bulk myeloid cells
(Fig. 1), we did retrospectively detect Mgl2þ cells in that scRNA-seq
dataset, as well as by flow cytometry (Supplementary Fig. S2D). TAM-
subset clusters were also accompanied by an Arg1þ stress-responsive
cluster akin to that found in the sorted monocytes (Fig. 2B; Supple-
mentary Fig. S2B and S2C). Indeed, reclustering of the entire stress-
responsive cluster from the bulk tumor myeloid sample revealed that
this program was acquired by monocytes, “Mono-Int” and TAMs
(Fig. 2C; Supplementary Fig. S2E).

Segregated expression of stress-responsive genes and canonical
TAM-associated genes suggested divergent transcriptional programs
and we sought to determine whether these populations could also be
distinguished by flow cytometry. Differential gene expression analysis
of the stress-responsive and C1qaþ TAM clusters from our bulk
myeloid-cell sample revealed cluster-specific expression of cell surface
genes Il7r andVcam1, respectively (Fig. 2D). Using the same gating as
in Supplementary Fig. S1A, we confirmed this split in both “Mono-Int”
and TAMs (Fig. 2E) and we found enriched arginase 1 (ARG1)
expression in both IL-7Raþ populations (Fig. 2E and F; Supplemen-
tary Fig. S2F). As expected from the single-cell transcriptional analysis,
VCAM1þ cells were more abundantly found within TAMs (Fig. 2E
and F; Supplementary Fig. S2F).

Together, this dissection of sorted cell populations lent support to a
model in which monocytes and TAMs exist in a differentiation
trajectory, along which cells can adopt specialized cellular programs
(Fig. 2G andH). Some programs, such as those associated withMgl2þ

orVcam1þ TAMs, selectively emerged later, in mature TAMs. Others,
such as IFN-induced signaling or stress-responsiveness may be more
universally accessible across differentiation stages. In addition, we
detected populations of IFN-responsive monocytes in the peripheral
blood of B16 tumor-bearing mice (Supplementary Fig. S2G and
SSH), perhaps suggesting that systemic IFN signaling, or other
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Figure 1.

scRNA-seq analysis of mouse B16 tumor myeloid cells maps transcriptional heterogeneity among monocytes and TAMs. A, Schematic illustration of workflow for
isolation of specified myeloid cell populations from B16 tumors subcutaneously implanted in wild-type C57Bl/6 mice. B, t-SNE plot of graph-based clustering of
Ly6CþCD11bþ monocytes and Ly6C�MHCIIþ myeloid cells that were sorted and pooled from at least five B16 tumors, and underwent scRNA-seq (A). Each dot
represents a single cell. C, Expression of Csf1r (left) and Mafb (middle) on t-SNE plot of bulk myeloid cells (B), and display of selected Csf1rþMafbþ clusters (right).
D, Expression of gene signatures specific to Ly6Cþ monocyte, CD11clo TAM1, or CD11chi TAM2 populations (A; Supplementary Fig. S1F) displayed on t-SNE plot of
Csf1rþMafbþ myeloid cells (C). Cells with top median of signature expression level labeled in red. E, Heatmap displaying expression levels of top five DE genes
between Csf1rþMafbþ cell clusters (C). Genes ranked by fold change. F, Expression levels of selected genes among Csf1rþMafbþ cell clusters (C). G, Differentiation
trajectory model using Monocle analysis of cells from Csf1rþMafbþ clusters (C). Color coding corresponds to previous labels (B). H, Graph of relative pseudotime
values ofCsf1rþMafbþ cluster cells (C) fromMonocle analysis (G). I,Expression levels of cluster-specific genes (E) over relative pseudotime (H). Each line corresponds
to an individual gene.
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Figure 2.

scRNA-seq analysis highlights layering of microenvironment-induced programs during tumor monocyte-to-macrophage differentiation. A, t-SNE plot of graph-
based clustering (top) of Ly6Cþmonocytes sorted from B16 tumors and processed for scRNA-seq (Fig. 1A), and heatmap displaying expression levels of top five DE
genes between clusters (bottom) with genes ranked by fold change. B, t-SNE plot and graph-based clustering (top) of CD11chi TAMs sorted from B16 tumors and
processed for scRNA-seq (Fig. 1A), and heatmap displaying expression levels of top five DE genes between clusters (bottom) with genes ranked by fold change.
C, Stress-responsive cells (cluster 2) from bulk B16 myeloid cells (Fig. 1B) were selected for further clustering analysis (top). Heatmap of expression levels of
monocyte- and macrophage-specific genes (Fig. 1E) by cluster 2 subcluster (bottom). D, Heatmap of DE gene expression levels between cluster 2 and cluster 3 of
bulk tumor myeloid-cell sample (Fig. 1B). Genes ranked by degree of exclusivity to a given cluster (min.pct1/min.pct2). E, Expression levels of IL7Ra and VCAM-1, as
assessed by flow cytometry, of “Mono-Int” (Ly6CþCD64þ; top) and TAMs (Ly6C�F4/80þCD64þ; bottom) from B16 tumors. F, Example (left) and quantification
(right) of intracellular ARG1 expression by VCAM-1þ (top) or IL7raþ (bottom) TAMs from B16 tumors using flow cytometry. ARG1þ gating determined by isotype
control. Data are representative of two independent experiments with 3–5 mice per experiment (mean � SEM). G, Expression levels of selected genes along
differentiated trajectory generated by Monocle (Fig. 1G).H, Schematic model of tumor monocyte-to-macrophage differentiation that integrates lineage-associated
and microenvironmentally induced transcriptional programs.
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induction of this program, may define monocytes prior to tumor
entry. In contrast, stress-responsive populations were not detected
in the blood, suggesting that microenvironmental cues in the TIME
likely induce this activation program locally. Further studies are
warranted to explore whether these programs directly influence
monocyte differentiation processes or act as “layers” that accesso-
rize a canonical differentiation trajectory.

Mouse tumor macrophage subset heterogeneity does not
reflect “M1/M2” polarization

Macrophage exposure to type-1 or type-2 cytokines in vitro
results in “M1” and “M2” transcriptional signatures that are often
used to describe “proinflammatory,” or “anti-inflammatory” and
wound-healing processes, respectively (18–20). To address whether
“M1/M2” polarization was a useful construct to define tumor
macrophage diversity in vivo, we tested how “M1” and “M2” gene
signatures (43) corresponded to the tumor myeloid-cell subsets pro-
filed here. Using correlation and clustering analyses (Fig. 3A; Sup-
plementary Fig. S3A), we found that, contrary to in vitro findings,
tumor myeloid cells were marked by broad expression of both “M1”-
and “M2”-associated genes, and we did not observe substantial
correlation of gene expression within “M1” or “M2” gene groups
across single cells. These data suggest that although tumor myeloid
cells can express individual “M1” and “M2” genes, they rarely do so in
any distinguishably consistent way during unperturbed tumor growth.
We next processed tumor myeloid cells from MMTV-PyMT sponta-
neous mammary carcinomas for scRNA-seq analysis, sorting on
Lin�CD11cþ and/or CD11bþ cells to capture the full cadre of myeloid
populations including MHCIIþ/� cells (Supplementary Fig. S1A). We
found that MMTV-PyMT tumors shared populations with the iden-
tical signatures as those defined for B16 tumors in Fig. 1, albeit in
different proportions, and also showed a lack of coassociation between
“M1” and “M2” signatures amongst the clusters (Fig 3B and C;
Supplementary Fig. S3B–S3E).

While myeloid-cell populations appeared to be largely defined
by differentiation stage and activation programs, we considered
whether other core cellular features could help to further distinguish
subsets across diverse microenvironments. It is now increasingly
appreciated that metabolic reprogramming accompanies differentia-
tion of immune cells, including macrophages (54). Indeed, assessment
of metabolism-related genes (42) demonstrated that glycolysis-
associated genes were specifically enriched in the stress-responsive
cell cluster, whereas genes pertaining to oxidative phosphorylation
were specifically enriched in C1qaþ TAMs in two distinct mouse
models (Fig. 3D and E; Supplementary Fig. S3F). This suggests that
these populations have additional important biological features in
common—namely those coupled to distinct bioenergetic processes
and demands.

Together, our data provide compelling evidence that “M1” and
“M2” pathways have limited use in defining in vivo tumormyeloid-cell
differentiation and subset plasticity during normal tumor develop-
ment. Rather, common microenvironmentally induced programs and
associated metabolic programs may yield greater insight in efforts to
transcriptionally define and selectively target monocyte/TAM subsets.

Human RCC-infiltrating monocytes and macrophages mirror
murine populations

We next assessed how the mouse monocyte/macrophage tran-
scriptional programs we identified might compare with those
from human cancers. We performed scRNA-seq analysis on
HLA-DRdim/þLin� myeloid cells sorted from an RCC sample,

which are described to have substantial myeloid-cell infiltra-
tion (55), as well as six melanoma and four head and neck cancer
samples (Fig. 4A and B; Supplementary Fig. S4A). Signatures
derived from previously described blood myeloid-cell popula-
tions (11, 44) guided cluster identification and exclusion of cDCs
(Supplementary Fig. S4B). Analysis of the CSF1RþMAFBþ clusters
revealed a heterogenous collection of monocytes and macrophages
with varying levels of CD14 and CD16 (Fig 4C–E).

As in mouse models, we detected early-stage CD14þS100A8þ

classical monocytes along with terminally differentiated C1QCþ

TAMs (Fig. 4E and F; Supplementary Table S2). Another population
was CD14þ and differentially expressed LYPD3 and MHC-II genes,
consistent with intermediate differentiation of monocytes towards
TAM (“Mono-Int”; Fig. 4E and F). A population of FCGR3Aþ non-
classical monocytes also expressed IFN-stimulated genes and thus
appears to functionally represent “IFN-responsive” cells (Fig. 4E and
F; Supplementary Fig. S4C).

Finally, we found that there were a mix of cells on the monocyte–
macrophage trajectory that expressed the stress-responsive program
identified in mice, including the gene SPP1 (Fig. 4F; Supplementary
Fig. S4C). When compared further with C1Qþ TAMs, this SPP1þ

cluster was less mature based on higher expression of monocytic
markers (i.e., S100A genes) and lower expression of MHC-II–
related genes (Supplementary Fig. S4D). This analysis revealed also
a population marked by expression of the antioxidant gene SEPP1
(Fig. 4F). These cells largely resembledC1QþTAMs but were enriched
for FOLR2 (Fig. 4F; Supplementary Fig. S4E). FOLR2 is a marker
previously associated with tissue-resident macrophages in breast
cancer (56). Pseudotime analysis recapitulated a monocyte-to-
macrophage differentiation trajectory (Fig. 4G and H) but did not
connect the SEPP1þ cluster to the other monocyte–macrophage
subsets, potentially due to the distinct ontogeny of tissue-resident
macrophages, and thus this cluster was not considered for further
trajectory analysis (Fig. 4G and H).

As in the mouse samples, the stress- and IFN-responsive programs
aligned over the monocyte-to-macrophage trajectory, although in
these samples, IFN-responsive monocytes appeared more advanced
in differentiation stage. Again, there was broad coexpression of “M1”-
and “M2”-associated genes across the populations (Supplementary
Fig. S4G). Also, as in mice, there was a striking enrichment of a
glycolytic signature (42) within the stress-responsive (SPP1þ) cluster
as compared with the C1Qþ TAMs, supporting the notion that these
cells were functional orthologs in the two species (Fig. 4I). Altogether,
these data confirm the limitation of “M1” and “M2” applicability in
human tumors and illustrate the ability of other pathways to better
define myeloid-cell subsets in vivo.

Treg depletion elicits reprogramming of the tumor myeloid-cell
compartment

Myeloid-cell density can vary across patients (55), but how
myeloid-cell infiltration and differentiation is collectively regulated
in human cancer is still not well understood. When we quantified
myeloid-cell populations in 20 RCC patient biopsies using flow
cytometry, we found that the proportion of myeloid cells among
live immune cells was increased in tumors of greater size and later
stages (Supplementary Fig. S5A). Closer examination revealed
that the ratio of macrophages-to-monocytes was also specifically
increased in more advanced tumors (Fig. 5A, top). This suggested
that the balance between monocytes and macrophages is dynam-
ically regulated and that tumor growth is tied to higher macro-
phage density.
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We thus sought other immunosuppressive parameters that
might work in concert with increased macrophage accumulation.
Tregs are a potent immunosuppressive force in the TIME and
ablation can result in tumor clearance (24, 57). We found that
Tregs accumulated as kidney tumor size increased (Fig. 5A, bottom),
and that Treg abundance correlated well with macrophage-to-
monocyte ratios in RCC as well as melanoma (Fig. 5B). The positive
correlation between Treg and macrophage density spurred us to
ask whether one caused the other. Using Foxp3-DTR mice,
we found that depletion of Tregs dramatically reduced the macro-
phage-to-monocyte ratio in mouse B16 tumors (Fig. 5C, top)
as assessed by flow cytometry. These results were phenocopied
by treatment of mice with an anti–CTLA-4 that specifically depletes
tumor Tregs (Fig. 5C, bottom; Supplementary Fig. S5B–S5C;

refs. 24, 58). The shift in macrophage-to-monocyte ratio observed
following both methods of Treg loss preceded subsequent tumor
growth control (24, 58).

To further examine how Tregs may be influencing monocyte and
macrophage proportions, we performed scRNA-seq analysis onmouse
tumor Lin�CD11bþ and/or CD11cþ myeloid cells from B16 tumor-
bearing control and FoxP3-DTRmice. Csf1rþMafbþ clusters from this
experiment were aggregated with those from the original wild-type
B16 tumor sample in Fig. 1 and we observed similar cell populations
across both experiments and treatment conditions (Fig. 5D;
Supplementary Fig. S5D and S5E). Cluster proportions were modestly
shifted with Treg loss (Fig. 5D), but cells from control and Treg-
depleted tumors shared similar differentiation trajectories (Fig. 5E).
However,Monocle analysis revealed differences in the accumulation of

Figure 3.

B16 and PyMT tumor monocyte–
macrophage heterogeneity can be attrib-
uted to diversity in transcriptional andmet-
abolic programs, but not “M1/M2” polariza-
tion. A, Heatmap (left) and density plot
(right) of Pearson r coefficient scores
between “M1”- and “M2”-associated gene
expression levels within Csf1rþMafbþ cells
from B16 tumors (Fig. 1C). B, t-SNE plot of
Csf1rþMafbþ clusters from B16 tumors
(top; Fig. 1C) with expression levels of
“M1” (bottom, left) and “M2” (bottom, right)
gene signatures (A) displayed. Cells with
top median of signature expression level
labeled in red. C, t-SNE plot and graph-
based clustering of Csf1rþMafbþ clusters of
myeloid cells that were sorted from 1 PyMT
tumor and processed for scRNA-seq in an
independent experiment (top; Supplemen-
tary Fig. S3B). Expression levels of “M1”
(bottom, left) and “M2” (bottom, right)
gene signatures (A) displayed. Cells with
top 70 percentile of signature expression
level labeled in red. D, Expression levels of
glycolysis (left) and oxidative phosphory-
lation (“OxPhos”; right) gene signatures
(Supplementary Fig. S3F) displayed on t-
SNE plot of Csf1rþMafbþ clusters from B16
tumors (Fig. 1C). Cells with top 70 percen-
tile of signature expression level labeled in
red. E, Expression levels of glycolysis (left)
and oxidative phosphorylation (“OxPhos”;
right) gene signatures (Supplementary
Fig. S3F) displayed on t-SNE plot of
Csf1rþMafbþ clusters from PyMT tumors
(C). Cells with top 70 percentile of signa-
ture expression level labeled in red.
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cells along the trajectory. Namely, whereas tumor monocytes, “Mono-
Int,” and TAMs from the control sample acquired progressively
increased pseudotime scores, “Mono-Int,” and TAM populations in
the Foxp3-DTR sample did not exhibit sequential increases in pseu-

dotime scores (Fig. 5E). In effect, TAM progression appeared stunted
following depletion of Tregs.

In addition to increased expression of inflammatory and immu-
nomodulatory genes (e.g.,Ccl24,Arg1,Retnla,Mmp12,Mmp13,Nos2),

Figure 4.

HumanRCCandmouse tumormyeloid-cell compartments exhibit shared transcriptional features.A, Schematic of the one humanRCC, sixmelanomas, and four head
and neck biopsy samples processed for scRNA-seq analysis.B,UMAP plot of graph-based clustering of bulk myeloid (Lin�HLA-DRþ) cells sorted from human biopsy
samples (A).C,Gene expression levels ofCSF1R (left) andMAFB (right) displayed onUMAP plot of human tumor-infiltratingmyeloid cells (B).D,UMAP plot of graph-
based clustering of CSF1RþMAFBþ cells (C) with cells from all human biopsy samples (left) or specified cancer type (right) displayed. E, Expression levels of selected
genes (CD14, FCGR3A, CD68) or gene signature (MHC-II–associated genes) displayed on t-SNE plot of CSF1RþMAFBþ clusters (C). F, Expression of selected genes
expressed by CSF1RþMAFBþ clusters (C). G, Differentiation trajectory model generated by Monocle analysis of CSF1RþMAFBþ clusters (C). H, Relative pseudotime
values of early-stage CD14þ monocytes, CD14þ “Mono-Int,” C1Qþ TAMs, IFN-responsive cells, and stress-response TAM clusters (C) from Monocle analysis (G).
I, Expression levels of glycolysis-associated gene signature by cells in stress-responsive and C1Qþ TAM cells (B).
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Figure 5.

Immunosuppressive Treg cells promote tumormonocyte-to-macrophage differentiation.A,A total of 20 humanRCC biopsiesweremeasured and processed for flow
cytometric analysis. The ratio ofmacrophage-to-monocyte (log2) cell numbers (top) and Treg frequency amongCD45þ cells (bottom)were quantified. Sampleswere
acquired and pooled for analysis. � , P < 0.05; Kruskal–Wallis rank test. Dashed lines represent the median and dotted lines represent 25th percentile and 75th
percentile. B,Dot plot and Spearman correlation coefficient ofmacrophage-to-monocyte cell number ratio (log2) and Treg frequencywithin CD45þ cells in 20 human
RCC (top) and 16 melanoma (bottom) biopsies that were analyzed by flow cytometry. Samples were acquired and pooled for analysis. C,Quantification of the ratio
betweenmacrophages (Ly6C�F4/80þCD64þ) andmonocytes (Ly6CþCD11bþ) cell number ratio in B16 tumors ofDT-treated control andFoxp3-DTRmice (top), or of
wild-typemice treatedwith depleting anti-CTLA-4 (IgG2c clone) or isotype antibody (bottom). Data are representative of at least two independent experimentswith
3–9 mice per group per experiment (mean � SEM). �� , P <0.01; ���� , P < 0.0001; unpaired t test. D, t-SNE plot of graph-based clustering (top) of B16-infiltrating
Csf1rþMafbþ cells from wild-type mice (Fig. 1) which were aggregated with DT-treated control and Foxp3-DTR mice (Supplementary Fig. S5D) from a second
independent experiment in which tumors from at least 5 mice were pooled. Cell numbers in specified clusters were quantified (bottom). E, Differentiation trajectory
model generated from Monocle analysis (top) and relative pseudotime values (bottom) of Csf1rþMafbþ cluster cells from B16 tumors from DT-treated control (left)
and FoxP3-DTRmice (right). F,Volcano plot displayingDEgenes betweenB16 tumor “Mono-Int” (top) andC1qaþ TAM (bottom) cluster cells fromDT-treated control
and FoxP3-DTRmice (D). Geneswith >0.4 log-fold changes and an adjusted P value of 0.05 (based onBonferroni correction) are highlighted in red. Genes of interest
labeled. G, Expression of selected monocyte-associated genes displayed on the differentiation trajectory (E) of control (top) or Foxp3-DTR (bottom) B16 tumor-
infiltrating Csf1rþMafbþ cells. H, Expression of selected macrophage-associated genes displayed on the differentiation trajectory (E) of control (top) or Foxp3-DTR
(bottom) B16 tumor-infiltrating Csf1rþMafbþ cells.
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expression ofmonocyte-associated genes was sustained in TAMs from
Treg-depleted tumors (Fig. 5F and G; Supplementary Table S3).
Moreover, expression of genes tied to macrophage differentiation
(e.g., C1qa, H2-Ab1, Apoe, Ms4a7) was decreased across stages of
differentiation (Fig. 5H; Supplementary Fig. S5F), further indicating
these TAMs were more immature. Our analysis suggests that Treg

depletion may impair implementation of TAM transcriptional pro-
grams, a remodeling detected early during tumor monocyte differen-
tiation. Altogether these findings support a model in which Treg

abundance promotes an accumulation of terminally differentiated
TAMs in both mouse and human tumors.

Multiparametric immune-cell analysis improves classification of
patients with kidney cancer

Given this association between T-cell subset density and TAM
maturation, we sought to further explore how features of tumor
macrophage infiltration could be harnessed to reliably inform features
of patient outcome, such as survival. Analysis of TCGA KIRC samples
using amyeloid gene signature fromCiberSort (59) demonstrated that
patients with varying levels of overall myeloid-cell density did not
significantly differ in their survival (Fig. 6A, left). We next stratified
TCGA patient data based on levels of the monocyte–macrophage
lineage genes CSF1R and MAFB, finding that patients with higher
levels of these had modest improvements in outcome (Fig. 6A,
middle). As these genes are not strictly macrophage specific, we
leveraged our scRNA-seq analyses of human RCC samples to generate
signature scores based on the ratio betweenmacrophage andmonocyte
(Fig. 4E). However, no significant differences in survival were revealed
using this metric (Fig. 6A, right).

As TAMdensity did not appear to robustly inform patient outcome,
we sought to test how TAM abundance corresponds with other
immune parameters and may stratify patients with kidney cancer,
using flow cytometry analysis of their biopsies. We thus performed
unbiased clustering analysis usingmeasurements of myeloid-cell, Treg,
and conventional T cell (Tconv) frequencies. This revealed three groups
of patients that were characterized by nearly binary (all high or all low)
levels of CD8þT cells, CD4þTconv, cDC2s, and cDC1s (Fig. 6B). These
groups could be further parsed by varied macrophage–monocyte
density: low (pink), moderate (yellow), and high (red; Fig. 6B, right).
Consistent with our previous finding (Fig. 5), the group with the
highest degree of macrophage differentiation was associated with the
consistent presence of Treg infiltration (Treg-Mp). Of two groups with
lowest macrophage differentiation, one (CD8-Mo-cDC1; pink) was
distinguished by notable infiltration of cDC1s, which are critical for
CD8þ T-cell responses (22, 23), and that group presented with
uniformly high CD8þ T-cell infiltration. A second group had higher
frequencies of both CD4þ T cells and cDC2s along with a variable
amount of Tregs, consistent with the demonstrated role of cDC2s in
supporting bothCD4þTconv andTreg responses (24). Furthermore, the
same patients clustered together again based on phenotypic analysis of
the CD8þ T-cell compartment (Fig. 6C). Notably, CD8þ T cells from
the CD8-Mo-cDC1 group (pink) expressed low levels of the exhaus-
tion markers PD-1 and CD38 (Fig. 6C and D) and were also
distinguished by higher expression of the checkpoint regulator
CTLA-4, which may indicate ongoing activation (Fig. 6C and D;
ref. 60). In contrast, the Treg-Mp (red) group showed the highest levels
of both exhaustion markers and proliferative capacity (i.e., Ki-67).

In testament to the heightened antitumor CD8þ T-cell profile
associated with low macrophage and Treg abundance but high cDC1
density, the subset of patients with these attributes (pink) had dra-
matically improved survival, showing no mortality for over 3 years

(Fig. 6E). This multiparametric clustering parsed patients with the
highest survival rates more profoundly from our dataset than the sole
metric of cDC1 infiltration (Supplementary Fig. S6A). Similarly,
although sole measurement of a cDC1 signature alone corresponded
to higher survival rates among patients with TCGA (Supplementary
Fig. S6B) in support of previous studies (23, 45), a combined mea-
surement of the ratio of cDC1s to macrophages through combined
gene signatures using the C1Qþ macrophage gene signature (Sup-
plementary Fig. S6C and S6D) allowed for identification of patients
with kidney cancer with better survival. Thus, fine-tuned stratifi-
cation of the kidney cancer TIME provided the resolution critical
for identifying three biologically distinct patient classes including
this CD8-Mo-cDC1 group, which defines patients with the best
CD8þ T-cell infiltration and outcome.

Discussion
Here we undertook scRNA-seq analysis of tumor monocytes and

macrophages to determine the key hallmarks of their transcriptional
diversity.We found two types of differentiationmanifest during tumor
development. On the one hand, we found a classical lineage differ-
entiation trajectory that progresses from monocytes-to-macrophages
in a way that has been long appreciated (61) with a discernable
“intermediate” monocyte (“Mono-Int”) cell population. A “Mono-
Int” population is, for reference, well described in other settings. For
example, Randolph and colleagues detect “intermediate”monocytes in
lymphoid and nonlymphoid tissue in steady-state conditions (62), and
fluorescent real-time lineage tracing identifies cells undergoing that
transition during allergic challenge (63).

On the other hand, we found two differentiation layers—“stress-
responsive” and “IFN-responsive”—that coexist along that trajectory
and that were shared acrossmultiplemousemodels aswell as a profiled
human RCC biopsy (Figs. 1 and 4). These programs were also present
in other recently published studies (11, 13, 64, 65). For example, in a
pan-cancer study, Cheng and colleagues discern myeloid populations
whose primary distinction is their expression of IFN-induced genes
(e.g., ISG15þ TAMs; ref. 11). Similarly, we noted that the stress-
responsive population shares characteristics with cells historically
contained within MDSCs (i.e., Arg1 expression and glycolytic pro-
gramming; ref. 27). A notable difference in our interpretation com-
pared with these previous reports lies in our incorporation of these
layers within the monocyte–macrophage differentiation axis, rather
than proposing them as a unique trajectory. Through independent
profiling of purified monocytes and macrophages in our study and
pseudotime analysis (Figs. 1 and 2), we find the stress-responsive
signatures evident in both cell populations and indeed across them. In
additional support of such a view, we found that an IFN-responsive
signature was enriched among monocytes in one mouse model and
macrophages in another (Figs. 1 and 3). We believe that this indicates
that macrophages can differentiate in two dimensions—progression
through the classical lineage as well as acquisition of specialized
states characterized by examples of IFN or stress exposure. For
these reasons, we prefer employing a nomenclature system that
integrates the degree of monocyte-to-macrophage differentiation
first, followed by additional transcriptional and functional qualities.
Intuitively, this is similar to CD4þ T cells that can differentiate
along a na€�ve–effector–memory axis while also being able to layer
on Th1/Th2/Th17 programs.

Despite the comparison with CD4þ T cells, we do not find any
populations, nor indeed any cells, that have an exclusively “M1” or
“M2” signature (Fig. 3). Individual genes such as Arg1 are associated
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with certain clusters, as some have observed previously (11), but both
correlation and signature analyses fail to identify any of the described
“M1” or “M2” genes as either being selectively linked with one another
in single cells, or as key classifiers of cell clusters. To this extent, the
“M1/M2” nomenclature has provided direction in the fruitful study of

myeloid-cell signaling and differentiation but does not appear to be
accurately categorize distinct differentiation states, at least for tumors
in vivo. We note the absence of data to the contrary of this conclusion
in other recent reports (43, 55, 65), although of course individual
nomenclature (e.g., “M2-like”) is clearly a matter of choice and needs

Figure 6.

Multiparametric analysis of tumor myeloid composition identifies patients with kidney cancer with effector CD8þ T-cell responses and improved survival rates.
A, Survival curves of patients with kidney tumor whose TCGA tumor samples exhibited high (33%) or low (33%) levels of expression levels of pan-myeloid
cell gene signatures derived from CIBERSORT (left), MAFB and CSF1R (middle), or ratio of monocyte-to-TAM gene signatures (Fig. 4; right), analyzed with
log-rank test. B, Heatmap of specified immune cell population frequencies (left) and the ratio of macrophage-to-monocytes (right) detected in 20 human
kidney tumor samples by flow cytometry. C, Heatmap of specified surface receptor or Ki-67 expression frequencies amongst CD8þ T cells from 20 human
kidney tumor samples that were analyzed with flow cytometry. D, Quantification of the frequency of CD8þ T cells from 20 human tumor kidney samples that
are PD1þ or CD38þ. Labeling of dots corresponds to patient groups (B and C). E, Survival curves of patients with kidney cancer in cohort analyzed with log-
rank test (B–D).
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only discussion as to which part of the in vitro signature might be
biologically relevant.

One important aspect of myeloid-cell biology that requires
further elaboration is how to identify IFN- and stress-responsive
phenotypes. For example, Gubin and colleagues use iNOS as a
marker by flow cytometry to define the IFN-stimulated population
induced by ICB (12), whereas Cheng and colleagues utilize
ISG15 (11). Particularly in the former study, which studied mac-
rophage identity following ICB therapies, varied levels of type I and
II IFNs may also modulate properties of this differentiation layer. In
the case of “stress-responsive” populations, our data also point to
IL7Ra expression, which may indicate involvement of TSLP sig-
naling through heterodimeric pairing with TSLPR (66). An impor-
tant set of conserved genes for “stress-responsive” macrophages,
taken from our article, is their consistent and significant enrichment
for glycolytic genes, particularly in comparison with conventional
C1q “mature” TAMs. Given that HIF-1 is known to induce glyco-
lytic genes under inflammatory and/or hypoxic conditions (54), this
finding raises the question of whether these cells are selected
for hypoxic environments where oxidative phosphorylation may
not proceed, as well as their specific function. Going forward,
the use of multiplexed imaging technologies such as ion beam
imaging (MIBI) and single-cell spatial transcriptomics will enable
this question to be addressed.

Our investigation of monocyte–macrophage differentiation led us
to explore how its regulation could inform our understanding of
antitumor immunity. Analysis of RCC and melanoma patient cohorts
revealed an increase in macrophage-to-monocyte ratios with tumor
grade, a rise that coincided with Treg density and was Treg dependent.
Tregs exert potent immunosuppression and are thought to restrain T-
cell activity and antitumor responses through modulation of DC
stimulatory capacity, production of immunosuppressive cytokines
and substrates, and competitive usage of growth factors andmetabolic
byproducts (24, 67, 68). It is becoming clear now that tumor Tregs also
strongly influence the monocyte–macrophage lineage, likely through
multiple mechanisms. In a recent study, tumor Tregs promoted tumor
macrophage numbers by supporting their mitochondrial capacity and
viability (69). Here, our scRNA-seq data demonstrates that early-stage
monocytes and “Mono-Int” cells are already unable to properly
implement TAM-associated transcriptional programs in the absence
of Tregs, indicating that Tregs also fuel macrophage differentiation
processes. This liaison between Tregs and macrophages mirrors one
identified in the adipose fat of lean mice, where Tregs are thought to
actively maintain homeostasis and hold inflammatorymacrophages at
bay (70, 71). Similarly, during the resolution of injury and inflamma-
tion in skeletal muscle and heart tissue, a transition from proinflam-
matory to anti-inflammatory macrophages occurs in a manner that
appears to rely on Treg accumulation (72, 73). That Tregs may act on
tumormacrophages in a similar fashion offers another example of how
the TIME can exploit immune programs of “accommodation” that are
otherwise in place to achieve tissue homeostasis in the face of
perturbations (74).

Accumulation of a broad swath of macrophages in the TIME has
previously been implicated with poor outcome (75). Consistent
with this but at higher resolution, we detected a group of patients
with kidney cancer for whom high macrophage-to-monocyte
abundance was associated with diminished T-cell infiltration and
exhaustion of those cells detected, concurring with other
reports (55, 64). Our article thus points to an emerging trio of
Tregs, macrophages, and exhausted T cells, whereby effector T cells
may be corrupted through direct cellular interactions with TAMs,

as has been suggested by observations of TAM–CD8þ T-cell
colocalization in clear-cell RCC (ccRCC; ref. 64), or indirectly
through macrophage-induced Treg expansion and activity (8, 76)
or DC suppression (24, 77).

Yet, high myeloid-cell infiltration or skewed macrophage-to-
monocyte ratios alone were not prognostic for KIRC patient
survival. Indeed, although macrophages have often been found to
be negatively associated with patient outcome, macrophage abun-
dance as a sole biomarker has not been universally useful with prior
studies similarly reporting instances in which macrophage abun-
dance is not informative for patient cohorts with specific cancer
subtypes, treatment regimens, or tumor stage (78–81). Clustering
analysis of kidney TIME composition using comprehensive
immune parameters, however, uncovered an archetype character-
ized by low macrophage-to-monocyte differentiation in conjunc-
tion with high cDC1 infiltration. These patients (CD8-Mo-cDC1)
had elevated infiltration of CD8þ T cells with low surface expression
of proteins associated with exhaustion and highly enhanced survival
rates (Fig. 6, pink). Notably, recent work focused on ascertaining
the different immune archetypes across solid tumors suggests that
these patient groups, though most frequent in kidney cancer, span
cancer types including frequent representation in colorectal and
bladder tumors (33).

Identification of a CD8–Mo–cDC1archetype emphasizes the value
of integrating multiparametric biomarkers as a means to better parse
patient outcome and to establish principles of TIME organization.
Given that T-cell activity appears to be collectively influenced by
multiple immune cell populations with distinct partnering patterns,
our analysis suggests that dual targeting of TIME axes may elicit the
best CD8þ T-cell responses. For example, reprogramming and/or
depletion of macrophages may relieve active suppression (2, 14) and
strategies that boost cDC1 recruitment and survival (1) may further
benefit even those with favorable macrophage-to-monocyte density.
It is also notable that this protective archetype is specifically
enriched for monocytes. Indeed, monocyte differentiation into
macrophages may not be inevitable and accumulation of “Mono-
Int” cells has been detected in multiple forms of inflamma-
tion (10, 16, 82, 83). In addition, the potential importance of
monocytes is indicated by their increased numbers in the blood
of ICB responsive as compared with patients with nonresponsive
melanoma (32). In patients with ccRCC, IFN-responsive TAMs
exhibited lower levels of HLA-DR, reminiscent of the “Mono-Int”
cells described here, and higher levels of these ISGhi TAMs were
predictive of survival after tyrosine kinase inhibitor treatment (79).
Such a relationship opens questions across cancer type; namely,
whether “Mono-Int” are distinct in their antitumor function, and
how might monocytes be additive or synergistic with cDC1s to drive
antitumor CD8þ T cells?

Altogether these findings contribute to the endeavor of clarifying
useful distinctions in myeloid-cell gene expression and highlight
settings in which multiparametric analysis of tumor myeloid-cell
composition can inform patient immune archetype and guide deve-
lopment of relevant therapies.
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