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We propose an emerging strategy for advanced cancer treatment based on progressive, stepwise remodel-
ing of tumor microenvironments (TMEs). TMEs are variable but show conserved archetypes across patients
and tissue origins. Deep learning over single-cell atlases collected from perturbed tumors can uncover gene
and cellular networks shifting between archetypes. This allows for designing “nudge” or “state-shifting”
drugs whose sequential application achieves stepwise transformation of a TME from an adverse to a more
favorable state, dismantling deleterious tumor-host interactions to achieve patient remission.

Introduction

The development of cancer therapeutics
has historically been driven by the ultimate
objective of improving patient survival.
Evaluating this critical endpoint requires
rigorous clinical trials, which are inherently
time intensive and costly. The quest to
eliminate cancer is often framed as finding
therapies with substantial single-agent ef-
ficacy. To date, nearly all approved cancer
treatments have demonstrated success
by providing a measurable survival benefit
as monotherapies, regardless of the
magnitude of their effect.

Beyond measuring the duration of pa-
tient survival, additional quantitative criteria
have been introduced, such as Response
Evaluation Criteria in Solid Tumors (RE-
CIST), which uses imaging methods to
evaluate tumor size at early time points
and has helped advanced drugs that may
only be partially effective move into further
development. Conversely, drugs that
effectively hit their molecular target but fail
to independently induce tumor shrinkage
or achieve remission are often considered
failures.

It is typically only after approval that we
have been able to pursue combinatorial
trial campaigns in which new drugs are
partnered with existing ones to seek
possible synergies. As a recent example
of this, the dramatic success of check-
point blockade drugs as single agents
was followed by pairing them with chemo-

therapy, radiotherapy, and other agents
to seek improved outcomes. Many clinical
trials are grounded in preclinical evidence
and mechanistic intuition, aiming to test
combinations in which two drugs are
given simultaneously with the expectation
of additive effects or synergism based on
their mechanisms of action.” In some
cases, for chemotherapeutics, focus has
been placed on devising second drugs
that prevent resistance to the first.” Com-
binations arrived at through such mecha-
nistic intuition have often failed due to
toxicity or lack of efficacy, and even
some that provide benefit, for example,
ipilimumab plus nivolumab, induce severe
adverse events and toxicity that result in
nearly 40% of patients discontinuing
treatment.®> Crystallizing these failures,
a recent study concluded that most
approved combination therapies for can-
cer barely have additive effects.”

In this commentary, we step back to first
consider classifications of tumors and
their tumor microenvironments (TMEs). In
thinking about the varieties of networks of
cells in TMEs that cooperate with muta-
tion-bearing cancer cells to permit unfet-
tered growth, immune evasion, and meta-
static spread, there are opportunities to
perform precision discovery of drugs for
each class of TME that may never be iden-
tified as single agents. In contrast to
considering screens for new drugs based
largely on modifying the tumor or the im-

mune system in isolation, we consider
the merits of searching for pathways that
sequentially reconfigure their collabora-
tions, through a series of intermediate
states, to promote disease resolution.
The strategy we suggest is motivated and
enabled by the leaps made in single-cell
genomics and deep representation
learning.”

High-resolution methods identify
TME archetypes
The concept that host cells collaborate
with tumor cells to promote cancer pro-
gression is well established. As with
many chronic disease states, tumors exist
and grow through a semi-stable coopera-
tion of the tumor together with immune
and stromal cells and their pathways.
However, TMEs vary significantly in
both the quantity of immune infiltrates
and the composition and density of non-
immune stromal cells, such as fibroblasts.
Different TMEs are expected to thus
respond variably to different drugs, and
the absence of this knowledge may in
some cases obscure the efficacy of drugs
under trial. This motivates the question:
can the sheer diversity of individual tu-
mors be classified and organized into
definable classes of tumors sharing com-
mon biological features and connections
between cell types?

Over the past 20 years, a series of
studies have profiled tumors
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Figure 1. Technologies and clustering approaches for identifying archetypal cancer states
(A) Overview of high-dimensional assays used to characterize the tumor microenvironment (TME), focusing on compositional, proteomic, transcriptomic, and
spatial features. (B) uniform manifold approximation and projection (UMAP) visualization of tumor immune archetypes from the UCSF Immunoprofiler cohort.®
Top: Louvain graph-based clustering on a 10-feature input was used to classify patients into recurring tumor immune archetypes. Each dot represents one
patient, colored by archetype. Bottom: the same UMAP, color-coded by tumor type, is shown. A stacked bar plot shows the tumor type distribution within each
archetype. (C) lllustration of dimensionality reduction applied to a TME snapshot, highlighting distinct clusters that represent different cell types and cell states. (D)
Inset on tumor-associated macrophages and fibroblasts, showing the coordination of transcriptomic programs between the two cell types. Left: gene expression
programs (GEPs) capture coordinated activity. Right: “skyline plot”: bar plot indicates gene program distribution. Columns represent GEPs with colors repre-

senting different cell types in which the GEP occurs.

independently of—and usually prior to—
treatment. Chief among them is The Can-
cer Genome Atlas (TCGA), which has
cataloged >20,000 tumor tissues by bulk
RNA-seq and whole-genome sequencing
(Figure 1A). More recently, enabled by the
advent of single-cell omics technologies,
individual tumors can now be analyzed
at the resolution of tens of thousands of
cell transcriptomes via single-cell RNA
sequencing (scRNA-seq) (Figure 1A).
The recent advent of spatial omics
(Figure 1A) has further elaborated the
cellular collaborations in TMEs, including
the identification of “neighborhoods” or
“hubs”® in which key cell types are ar-
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rayed together in a subregion of the tu-
mor. In addition, when larger tumor re-
gions are studied at the level of
composition or bulk RNA expression,
more holistic “ecotypes”’ or “arche-
types”® spanning the tissue of origin of
the tumor emerge (Figure 1B). These
recurring patterns—in the frequency and
composition of cell types recruited to the
TME, the gene expression programs
(GEP) of those cell types, and the corre-
sponding gene expression programs of
tumor cells themselves—are strongly
associated to one another and to disease
outcomes. One of the most interesting
features of TME archetypes is how they

canbe conserved across tumors origi-
nating in different tissues and at the
same time how a single tumor indication
can ultimately display a great variety of ar-
chetypes (Figure 1B). For instance, about
half of melanomas possess a T cell- and
macrophage-rich TME, while many others
are classified as various forms of immune
deserts.

Uncovering existing multicellular
gene expression networks in a TME
Most of the existing data on shared TME
subtypes lack an understanding of how
drugs would differentially impact these
conserved TME archetypes. To obtain
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Figure 2. Conceptualization of drugs akin to chemical catalysts that promote sequential transitions in tissues

(A) A theoretical energetics diagram illustrating the initial reactant chemicals and the role of a catalyst in lowering the activation energy required for the reaction to
proceed to an intermediate state. A similar conceptual transition is proposed for TME archetypes, where the application of a drug facilitates shifts between states.
(B) A schematic of sequential perturbations (“nudges”) in cancer treatment. The untreated TME belongs to an archetype A, which is characterized by a set of
GEPs. A successful therapy shifts the original TME state A to a remission state Z. Single agents may not be able to achieve this (represented here as a direct A>Z
transition). Instead, a drug agent may nudge the tumor into an intermediate state, where new GEPs (and drug targets) emerge. The new intermediate state may be
susceptible to the application of a second drug agent, nudging the TME into a new state, and so forth. Ultimately, a chain of sequential treatments nudges the TME
step-by-step to the end goal of tumor elimination and patient remission (represented here as A-X—Z or A»D—Q—Z transitions).

such an understanding, it may be critical
not only to rely on studies of diverse
TMEs from a compositional perspective
but also to achieve a complete mapping
of all cellular and transcriptional networks
within a TME or TME archetype. We pro-
pose that this should involve both account-
ing for the contained cell populations (cell-
specific transcriptomic programs) and
understanding the transcriptional similar-
ites among these populations (cross-
cellular transcriptomic programs), both in
their unperturbed state and upon drug
administration. This can be achieved
through matrix factorization® of the sin-
gle-cell gene expression profiles, whereby
collections of genes that tend to be up- or
down-regulated in synchrony (here called
gene expression programs [GEPs]) are
identified, and single cells are assigned
weights quantifying their usage of each
GEP (Figure 1C). Mathematically, the
factorization procedure discovers a set of
concise, yet informative, latent dimensions
(GEPs) and summarizes single-cell profiles
along these dimensions. Typically, the
result is a low-dimensional representation
of the dataset, which is then further
reduced to two dimensions by non-factor-
ization methods (e.g., t-SNE and UMAP)
for visualization purposes.

We suggest that representation learning
of GEPs is particularly suited to capture

TME archetypes and drug-induced TME
state transitions. Previous studies have
found that GEPs expressed in one cell
type can be well correlated with other
GEPs expressed in their neighboring cells
in a variety of tissues, '° indicative of broad
biological programs linked across cell
types. Furthermore, the use of GEPs en-
hances our ability to highlight and under-
stand the nature of cell-cell interactions in
situ at any given time. In this way, an arche-
typal state of any tissue, tumor or other-
wise, can be described as a series of linked
gene expression profiles acting within its
component cells (Figure 1D).

When thinking about how to use such
information to find new drugs, it is notable
that considerable and successful effort
has already gone into learning how to
use high-throughput genomic screens to
perturb model cells as a process for iden-
tifying novel targets or drugs that can
fundamentally change a cell’s behavior.
In particular, Perturb-seq methods'’
allow the introduction of multiple muta-
tions to cell lines or cell populations,
followed by scRNA-seq analyses to un-
derstand the breadth of whole-cell tran-
scriptional changes that result from each
perturbation. However, studying drug or
gene reactions in cells out of context
and in separation from both their native
archetypal partners and specific tissue or-

ganization is very likely to miss the biolog-
ical feedback loops that make a chronic
disease so stable. Hence, a separate
strategy needs to be based around the
entire network as a starting point from
which to consider the useful transitions.

An emerging strategy is becoming
apparent, one that integrates drug-pertur-
bation studies, single-cell genomics, and
machine learning to identify the gene
and cellular networks that shift TME ar-
chetypes. We postulate that developing
these methods—and the insights they
yield—will be critical for answering the
following questions. How might we recon-
ceive the entire archetypal network and
access hard-coded major perturbations
that change the TME network? How do
we leverage TME perturbation studies to
understand the multi-step processes of
tumor development and immune system
accommodation, which likely occur differ-
ently in each archetype? And, finally, how
can we learn to reverse these processes
and push the entire system toward
archetypes that are sensitive to tumor
elimination?

A framework for steering tissues
along a therapeutic trajectory

Figure 2A outlines the theoretical ener-
getics diagram for a series of initial reac-
tant chemicals and the effect that a
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catalyst can have in lowering the activa-
tion energy needed for them to react and
reach a new state (here, the “intermediate
state”). Application of a second catalyst
(or the addition of another reactant) can
then create a low-energy path for that
collection of chemicals to react and form
a final state of products. Notably, the sec-
ond catalyst may have no effect, or have a
different and possibly undesirable effect,
if the reaction driven by the first has not
occurred or is incomplete.

A tumor and its TME are effectively a
nearly stable state, and we conceive it as
being similar to a collection of chemical re-
actants in an equilibrium. Effective drugs
can then be considered as lowering the en-
ergy to reach a new state. That may occur
by changing the transcriptional state within
a given cell (or cells) as well as by changing
the relative positioning of cells within the
tissue, the proliferation or viability of
some cells, or recruitment from distal loca-
tions such as a draining lymph node in the
case of a solid tumor. Some of those
changes may reversibly occur even in the
absence of an initiating drug. However,
following the application of this initial
drug, a new TME state is stabilized and
may be able to respond to a second drug
catalyst. This could occur, for example, if
the receptor for that drug was only ex-
pressed following a first perturbation or if
its target now has increased capacity to
lead to a transition—e.g., due to reconfigu-
ration of its ligands or binding partners.
Some of these intermediate states may
be reached following prolonged exposure
to the initial drug.

If cancers do indeed share dominant
archetypal states before drug treatment,
then finding a drug combination that leads
to tumor clearance and protective immu-
nity may not be possible with the same
immune-modulating drugs across all pa-
tients. However, it may be achievable for
patients whose tumors initially started
from the same dominant archetype. A
strategy emerges in which the empirical
learnings of resolution processes and per-
turbations for a given TME archetype can
help to predict sequences of transitions
that can be achieved via sequential appli-
cation of multiple drugs, two or more, in a
timed series (here “in sequence” is distin-
guished from “in combination” —which
typically means two drugs at the same
time). Instead of hoping to get a single
drug or two drugs to move a tumor from
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A to Z, this approach could first find a
drug that takes a tissue through the A-
to-D transition, empowering administra-
tion of a second drug that takes the tissue
from state D to Q and a third that carries
the system from state Q to Z. In this
framework, we anticipate the second
and third drugs to have no effect unless
the TME is brought to “receptive” states
D and Q, respectively (Figure 2B).

A critical distinction between this
approach and conventional combination
therapy is the offset timing of drug adminis-
tration. Biological systems can take time to
realign following exposure to a first drug,
and we postulate that a second drug
may be most effective only in the tumor
milieu created in the wake of the first
drug’s administration. As a theoretical
example, the targeted depletion of one
cell type in the TME may initially lead to
heightened inflammation, one that restricts
a measured T cell response. However,
following the resolution of that phase, if a
modestly stable and modified TME re-
mains, we can hypothesize that it may
more favorably license a T cell-directed
therapeutic. In line with this concept, one
recent study showed that CAR T therapy
worked best when delivered 3 days
after targeted removal of folate receptor-
B-expressing macrophages but not when
given simultaneously.'® The authors of
this work suggested that changes inthe im-
mune composition of the TME, established
over the 3-day gap, were necessary for the
improved CAR response. Other studies
investigated the benefits of staggered
timing of chemo- or radiotherapies and im-
mune-modulating drugs. Our perspective
offers a comprehensive framework that de-
parts from optimizing the timing of drug
administration after drug discovery and
instead reorients the drug discovery pipe-
line toward finding promising therapies
that would be missed if not considered as
part of sequential administration.

In this setting, one does not presume to
fully destroy tumors and activate immu-
nity all at once, but rather to nudge the
system into a receptive state from which
a second drug can take you further. A
model for the variety of sequences of
this type, some built around checkpoint
drugs, others accessing different modal-
ities, is depicted in Figure 2B. A further
benefit of these sequential nudges is the
potential to reduce harmful side effects
by avoiding dose-limiting escalation of

Cancer Cell

single agents and therefore the com-
pounded toxicities of co-administered
drugs at high dose.

Computational methods for
establishing milestones in disease
resolution

The key to this approach will be to learn
many real-world multicellular GEP transi-
tions, as a community, such that we can
rationally find the paths (Figure 2B) for
transitioning a given dominant TME arche-
type to another one and eventually for
reaching a tumor-eliminating archetype.

The origin of the ground truth data for
this will be a direct probing of collections
of tumors of different archetypes. While
treating patients with large collections of
existing or new drugs is infeasible, the
treatment of tumor slices'® or small frag-
ments of cancer tissues'* has been vali-
dated as accurately representing biolog-
ical activity and responses to real-world
perturbations (e.g., drugs). These studies
are amenable to being performed in
multiple cancer types, and, since they
are amenable to scRNA-seq, they will be
able to capture the real-world conse-
quences of treating a multicellular collec-
tion of cells with many drugs across all
tumor archetypes. In this way, we can
learn the changes that take place in multi-
cellular GEPs for each archetype and for
each drug (Figure 3A).

Computationally, the next building block
for nudge drug prediction and application
is in silico mapping of tissue state transition
that occurs following a given perturbation.
A collection of GEPs describing relevant
TME properties is derived through a
combination of knowledge-driven and
data-driven methods and is then refined
to ensure their recurrence across multiple
patients, conditions, etc. The GEPs serve
as a coordinate system—individual tumors
are represented as vectors of GEP scores,
each coordinate reflecting the activity of a
given GEP in the tumor. Next, drug effects
are quantified as shifts in the same GEP
coordinate system (shown as “skyline
plots” in Figure 3B). A sequence of drugs
can then be appropriated (or designed) to
achieve a stepwise effect such that a
drug-susceptible GEP is treated with the
corresponding drug only after the suscepti-
ble GEP has been established (via an earlier
administered drug; Figure 3C).

More generally, this is a question
of representation learning, namely,
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Figure 3. Real-world perturbation platforms to learn and test sequential nudge drug combinations

(A) Proposed experimental layout utilizing patient-derived tissue slice models combined with multiplex scRNA-seq to study the real-world effects of drug per-
turbations on a preserved TME or TME archetype. (B) Computational framework for identifying GEPs and their distribution across different cell types within the
TME. “Skyline” bar plot illustrates GEP weights, with colors representing specific cell types, enabling insights into how drugs affect distinct cellular populations in
the TME. (C) Iterative computational approach leveraging machine learning to identify TME transition states and predict nudge drug combinations for driving
therapeutic outcomes. (D) Conceptual schematic illustrating how studying other biological processes, such as wound healing, using the same experimental and

computational framework can uncover shared GEPs with the TME. This approach offers an additional avenue for identifying candidate drugs to shift TME ar-
chetypes toward improved outcomes, including long-term remission.
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transforming the high-dimensional omics
profiles of single cells into low-dimen-
sional representations capturing mean-
ingful biological patterns. The creation of
perturbation atlases (Figure 3B) motivated
learning representations of cell states by
deep generative models that can then be
used to predict the outcomes of perturba-
tions,'® including unseen and combina-
tion perturbations. Generative models
can already predict perturbation re-
sponses through latent-space arithmetic.
Newer work applies single-cell foundation
models—self-supervised neural networks
pre-trained on vast datasets and subse-
quently adapted to perform desired
downstream tasks—to predict perturba-
tion response. Building such foundation
models for tumor archetypes should
enable in silico predictions for unseen
perturbations.

Another avenue for discovering “nudge
drugs” will come from time-resolved anal-
ysis of other biological processes, notably
those that result in resolution, such as heal-
ing of wounds, or from studies of the devel-
opment of tissues or organs. In the frame-
work of tissue biology, nature already
encodes some of the fastest low-energy
transitions. In such time-resolved studies,
cell states can be observed as they evolve
and co-evolve in tissues undergoing trans-
formation'® (Figure 3D). Furthermore, this
type of study has been able to discover
component gene products of a GEP that
can induce the next set of GEPs."'® Such
studies illuminate how the new drugs
needed for these types of strategies may
be specifically defined from time-resolved
studies. We can track nature’s trajectories
for resolution and evolution of tissue states,
and we can then test drugs that target or
are the key drivers of those transitions. In
this sense, cancer treatments may be
learned by studying other biological transi-
tions. Application and validation of the
nudge sequences will likely take place not
only in on-slice/on-fragment perturbations
(Figure 3A) but also in basket clinical trials
or in some cases via well-validated mouse
models.

The path ahead

Throughout the history of cancer research
and therapeutic development, patient
outcomes have remained the gold stan-
dard for evaluating drug efficacy. Howev-
er, the inability to precisely characterize
the impact of each therapeutic agent—
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particularly when it does not achieve
remission as a monotherapy —has biased
drug discovery toward single-agent ap-
proaches. This limitation has likely re-
sulted in the premature dismissal of clin-
ical trial data without fully understanding
the biological effects of a given drug.

In reality, effective cancer treatments
must operate within highly complex bio-
logical systems, where a single agent
may not independently induce durable re-
sponses. However, this does not imply a
pure lack of therapeutic activity. Every
drug influences a trajectory of tumor evo-
lution, and without subsequent interven-
tions—potentially ineffective on their own
but critical in a sequential strategy—the
system may ultimately revert to its original
state or reach ineffective semi-stable
states (such as senescence). To address
this challenge, the integration of high-
dimensional data and advanced compu-
tational tools is essential. By leveraging in-
sights from perturbation-based studies,
we can better identify transitional states
that render tumors more susceptible to
follow-up therapies. This approach has
significant clinical implications, as it could
enable a paradigm shift in drug develop-
ment—moving beyond a rigid focus on
single-agent efficacy toward a more
nuanced understanding of therapeutic
synergies. Such a framework is urgently
needed to overcome the limitations of cur-
rent drug discovery strategies and to opti-
mize treatment sequencing for improved
patient outcomes.

The challenge lying ahead is general-
izing the methods we describe above
by combining two research directions.
Namely, the field will benefit from the com-
bination of (1) high-dimensional data
collection of the organization of cell net-
works and their responses to existing
and new real-world perturbations (i.e.,
drugs) and (2) the development of compu-
tational models that accurately define
both states and their available transitions.
Clinical trials may increasingly need to
collect initial high-dimensional molecular
profiling/archetyping data about a TME
to facilitate application of these principles.
Data sharing and the generation of
complex datasets from intact or nearly-
intact tissues subject to perturbation
will be critical. So too will be the coordi-
nated generation of high-dimensional
molecular data in clinical trials that will
provide ground-truth datasets as this
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approach is put into practice and, ulti-
mately, refined.
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