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We propose an emerging strategy for advanced cancer treatment based on progressive, stepwise remodel

ing of tumor microenvironments (TMEs). TMEs are variable but show conserved archetypes across patients 

and tissue origins. Deep learning over single-cell atlases collected from perturbed tumors can uncover gene 

and cellular networks shifting between archetypes. This allows for designing ‘‘nudge’’ or ‘‘state-shifting’’ 

drugs whose sequential application achieves stepwise transformation of a TME from an adverse to a more 

favorable state, dismantling deleterious tumor-host interactions to achieve patient remission.

Introduction

The development of cancer therapeutics 

has historically been driven by the ultimate 

objective of improving patient survival. 

Evaluating this critical endpoint requires 

rigorous clinical trials, which are inherently 

time intensive and costly. The quest to 

eliminate cancer is often framed as finding 

therapies with substantial single-agent ef

ficacy. To date, nearly all approved cancer 

treatments have demonstrated success 

by providing a measurable survival benefit 

as monotherapies, regardless of the 

magnitude of their effect.

Beyond measuring the duration of pa

tient survival, additional quantitative criteria 

have been introduced, such as Response 

Evaluation Criteria in Solid Tumors (RE

CIST), which uses imaging methods to 

evaluate tumor size at early time points 

and has helped advanced drugs that may 

only be partially effective move into further 

development. Conversely, drugs that 

effectively hit their molecular target but fail 

to independently induce tumor shrinkage 

or achieve remission are often considered 

failures.

It is typically only after approval that we 

have been able to pursue combinatorial 

trial campaigns in which new drugs are 

partnered with existing ones to seek 

possible synergies. As a recent example 

of this, the dramatic success of check

point blockade drugs as single agents 

was followed by pairing them with chemo

therapy, radiotherapy, and other agents 

to seek improved outcomes. Many clinical 

trials are grounded in preclinical evidence 

and mechanistic intuition, aiming to test 

combinations in which two drugs are 

given simultaneously with the expectation 

of additive effects or synergism based on 

their mechanisms of action.1 In some 

cases, for chemotherapeutics, focus has 

been placed on devising second drugs 

that prevent resistance to the first.2 Com

binations arrived at through such mecha

nistic intuition have often failed due to 

toxicity or lack of efficacy, and even 

some that provide benefit, for example, 

ipilimumab plus nivolumab, induce severe 

adverse events and toxicity that result in 

nearly 40% of patients discontinuing 

treatment.3 Crystallizing these failures, 

a recent study concluded that most 

approved combination therapies for can

cer barely have additive effects.4

In this commentary, we step back to first 

consider classifications of tumors and 

their tumor microenvironments (TMEs). In 

thinking about the varieties of networks of 

cells in TMEs that cooperate with muta

tion-bearing cancer cells to permit unfet

tered growth, immune evasion, and meta

static spread, there are opportunities to 

perform precision discovery of drugs for 

each class of TME that may never be iden

tified as single agents. In contrast to 

considering screens for new drugs based 

largely on modifying the tumor or the im

mune system in isolation, we consider 

the merits of searching for pathways that 

sequentially reconfigure their collabora

tions, through a series of intermediate 

states, to promote disease resolution. 

The strategy we suggest is motivated and 

enabled by the leaps made in single-cell 

genomics and deep representation 

learning.5

High-resolution methods identify 

TME archetypes

The concept that host cells collaborate 

with tumor cells to promote cancer pro

gression is well established. As with 

many chronic disease states, tumors exist 

and grow through a semi-stable coopera

tion of the tumor together with immune 

and stromal cells and their pathways. 

However, TMEs vary significantly in 

both the quantity of immune infiltrates 

and the composition and density of non- 

immune stromal cells, such as fibroblasts. 

Different TMEs are expected to thus 

respond variably to different drugs, and 

the absence of this knowledge may in 

some cases obscure the efficacy of drugs 

under trial. This motivates the question: 

can the sheer diversity of individual tu

mors be classified and organized into 

definable classes of tumors sharing com

mon biological features and connections 

between cell types?

Over the past 20 years, a series of 

studies have profiled tumors 
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independently of—and usually prior to— 

treatment. Chief among them is The Can

cer Genome Atlas (TCGA), which has 

cataloged >20,000 tumor tissues by bulk 

RNA-seq and whole-genome sequencing 

(Figure 1A). More recently, enabled by the 

advent of single-cell omics technologies, 

individual tumors can now be analyzed 

at the resolution of tens of thousands of 

cell transcriptomes via single-cell RNA 

sequencing (scRNA-seq) (Figure 1A).

The recent advent of spatial omics 

(Figure 1A) has further elaborated the 

cellular collaborations in TMEs, including 

the identification of ‘‘neighborhoods’’ or 

‘‘hubs’’6 in which key cell types are ar

rayed together in a subregion of the tu

mor. In addition, when larger tumor re

gions are studied at the level of 

composition or bulk RNA expression, 

more holistic ‘‘ecotypes’’7 or ‘‘arche

types’’8 spanning the tissue of origin of 

the tumor emerge (Figure 1B). These 

recurring patterns—in the frequency and 

composition of cell types recruited to the 

TME, the gene expression programs 

(GEP) of those cell types, and the corre

sponding gene expression programs of 

tumor cells themselves—are strongly 

associated to one another and to disease 

outcomes. One of the most interesting 

features of TME archetypes is how they 

canbe conserved across tumors origi

nating in different tissues and at the 

same time how a single tumor indication 

can ultimately display a great variety of ar

chetypes (Figure 1B). For instance, about 

half of melanomas possess a T cell- and 

macrophage-rich TME, while many others 

are classified as various forms of immune 

deserts.

Uncovering existing multicellular 

gene expression networks in a TME

Most of the existing data on shared TME 

subtypes lack an understanding of how 

drugs would differentially impact these 

conserved TME archetypes. To obtain 

Figure 1. Technologies and clustering approaches for identifying archetypal cancer states 

(A) Overview of high-dimensional assays used to characterize the tumor microenvironment (TME), focusing on compositional, proteomic, transcriptomic, and 

spatial features. (B) uniform manifold approximation and projection (UMAP) visualization of tumor immune archetypes from the UCSF Immunoprofiler cohort.8

Top: Louvain graph-based clustering on a 10-feature input was used to classify patients into recurring tumor immune archetypes. Each dot represents one 

patient, colored by archetype. Bottom: the same UMAP, color-coded by tumor type, is shown. A stacked bar plot shows the tumor type distribution within each 

archetype. (C) Illustration of dimensionality reduction applied to a TME snapshot, highlighting distinct clusters that represent different cell types and cell states. (D) 

Inset on tumor-associated macrophages and fibroblasts, showing the coordination of transcriptomic programs between the two cell types. Left: gene expression 

programs (GEPs) capture coordinated activity. Right: ‘‘skyline plot’’: bar plot indicates gene program distribution. Columns represent GEPs with colors repre

senting different cell types in which the GEP occurs.
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such an understanding, it may be critical 

not only to rely on studies of diverse 

TMEs from a compositional perspective 

but also to achieve a complete mapping 

of all cellular and transcriptional networks 

within a TME or TME archetype. We pro

pose that this should involve both account

ing for the contained cell populations (cell- 

specific transcriptomic programs) and 

understanding the transcriptional similar

ities among these populations (cross- 

cellular transcriptomic programs), both in 

their unperturbed state and upon drug 

administration. This can be achieved 

through matrix factorization9 of the sin

gle-cell gene expression profiles, whereby 

collections of genes that tend to be up- or 

down-regulated in synchrony (here called 

gene expression programs [GEPs]) are 

identified, and single cells are assigned 

weights quantifying their usage of each 

GEP (Figure 1C). Mathematically, the 

factorization procedure discovers a set of 

concise, yet informative, latent dimensions 

(GEPs) and summarizes single-cell profiles 

along these dimensions. Typically, the 

result is a low-dimensional representation 

of the dataset, which is then further 

reduced to two dimensions by non-factor

ization methods (e.g., t-SNE and UMAP) 

for visualization purposes.

We suggest that representation learning 

of GEPs is particularly suited to capture 

TME archetypes and drug-induced TME 

state transitions. Previous studies have 

found that GEPs expressed in one cell 

type can be well correlated with other 

GEPs expressed in their neighboring cells 

in a variety of tissues,10 indicative of broad 

biological programs linked across cell 

types. Furthermore, the use of GEPs en

hances our ability to highlight and under

stand the nature of cell-cell interactions in 

situ at any given time. In this way, an arche

typal state of any tissue, tumor or other

wise, can be described as a series of linked 

gene expression profiles acting within its 

component cells (Figure 1D).

When thinking about how to use such 

information to find new drugs, it is notable 

that considerable and successful effort 

has already gone into learning how to 

use high-throughput genomic screens to 

perturb model cells as a process for iden

tifying novel targets or drugs that can 

fundamentally change a cell’s behavior. 

In particular, Perturb-seq methods11

allow the introduction of multiple muta

tions to cell lines or cell populations, 

followed by scRNA-seq analyses to un

derstand the breadth of whole-cell tran

scriptional changes that result from each 

perturbation. However, studying drug or 

gene reactions in cells out of context 

and in separation from both their native 

archetypal partners and specific tissue or

ganization is very likely to miss the biolog

ical feedback loops that make a chronic 

disease so stable. Hence, a separate 

strategy needs to be based around the 

entire network as a starting point from 

which to consider the useful transitions.

An emerging strategy is becoming 

apparent, one that integrates drug-pertur

bation studies, single-cell genomics, and 

machine learning to identify the gene 

and cellular networks that shift TME ar

chetypes. We postulate that developing 

these methods—and the insights they 

yield—will be critical for answering the 

following questions. How might we recon

ceive the entire archetypal network and 

access hard-coded major perturbations 

that change the TME network? How do 

we leverage TME perturbation studies to 

understand the multi-step processes of 

tumor development and immune system 

accommodation, which likely occur differ

ently in each archetype? And, finally, how 

can we learn to reverse these processes 

and push the entire system toward 

archetypes that are sensitive to tumor 

elimination?

A framework for steering tissues 

along a therapeutic trajectory

Figure 2A outlines the theoretical ener

getics diagram for a series of initial reac

tant chemicals and the effect that a 

A B

Figure 2. Conceptualization of drugs akin to chemical catalysts that promote sequential transitions in tissues 

(A) A theoretical energetics diagram illustrating the initial reactant chemicals and the role of a catalyst in lowering the activation energy required for the reaction to 

proceed to an intermediate state. A similar conceptual transition is proposed for TME archetypes, where the application of a drug facilitates shifts between states. 

(B) A schematic of sequential perturbations (‘‘nudges’’) in cancer treatment. The untreated TME belongs to an archetype A, which is characterized by a set of 

GEPs. A successful therapy shifts the original TME state A to a remission state Z. Single agents may not be able to achieve this (represented here as a direct A→Z 

transition). Instead, a drug agent may nudge the tumor into an intermediate state, where new GEPs (and drug targets) emerge. The new intermediate state may be 

susceptible to the application of a second drug agent, nudging the TME into a new state, and so forth. Ultimately, a chain of sequential treatments nudges the TME 

step-by-step to the end goal of tumor elimination and patient remission (represented here as A→X→Z or A→D→Q→Z transitions).
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catalyst can have in lowering the activa

tion energy needed for them to react and 

reach a new state (here, the ‘‘intermediate 

state’’). Application of a second catalyst 

(or the addition of another reactant) can 

then create a low-energy path for that 

collection of chemicals to react and form 

a final state of products. Notably, the sec

ond catalyst may have no effect, or have a 

different and possibly undesirable effect, 

if the reaction driven by the first has not 

occurred or is incomplete.

A tumor and its TME are effectively a 

nearly stable state, and we conceive it as 

being similar to a collection of chemical re

actants in an equilibrium. Effective drugs 

can then be considered as lowering the en

ergy to reach a new state. That may occur 

by changing the transcriptional state within 

a given cell (or cells) as well as by changing 

the relative positioning of cells within the 

tissue, the proliferation or viability of 

some cells, or recruitment from distal loca

tions such as a draining lymph node in the 

case of a solid tumor. Some of those 

changes may reversibly occur even in the 

absence of an initiating drug. However, 

following the application of this initial 

drug, a new TME state is stabilized and 

may be able to respond to a second drug 

catalyst. This could occur, for example, if 

the receptor for that drug was only ex

pressed following a first perturbation or if 

its target now has increased capacity to 

lead to a transition—e.g., due to reconfigu

ration of its ligands or binding partners. 

Some of these intermediate states may 

be reached following prolonged exposure 

to the initial drug.

If cancers do indeed share dominant 

archetypal states before drug treatment, 

then finding a drug combination that leads 

to tumor clearance and protective immu

nity may not be possible with the same 

immune-modulating drugs across all pa

tients. However, it may be achievable for 

patients whose tumors initially started 

from the same dominant archetype. A 

strategy emerges in which the empirical 

learnings of resolution processes and per

turbations for a given TME archetype can 

help to predict sequences of transitions 

that can be achieved via sequential appli

cation of multiple drugs, two or more, in a 

timed series (here ‘‘in sequence’’ is distin

guished from ‘‘in combination’’—which 

typically means two drugs at the same 

time). Instead of hoping to get a single 

drug or two drugs to move a tumor from 

A to Z, this approach could first find a 

drug that takes a tissue through the A- 

to-D transition, empowering administra

tion of a second drug that takes the tissue 

from state D to Q and a third that carries 

the system from state Q to Z. In this 

framework, we anticipate the second 

and third drugs to have no effect unless 

the TME is brought to ‘‘receptive’’ states 

D and Q, respectively (Figure 2B).

A critical distinction between this 

approach and conventional combination 

therapy is the offset timing of drug adminis

tration. Biological systems can take time to 

realign following exposure to a first drug, 

and we postulate that a second drug 

may be most effective only in the tumor 

milieu created in the wake of the first 

drug’s administration. As a theoretical 

example, the targeted depletion of one 

cell type in the TME may initially lead to 

heightened inflammation, one that restricts 

a measured T cell response. However, 

following the resolution of that phase, if a 

modestly stable and modified TME re

mains, we can hypothesize that it may 

more favorably license a T cell-directed 

therapeutic. In line with this concept, one 

recent study showed that CAR T therapy 

worked best when delivered 3 days 

after targeted removal of folate receptor- 

β-expressing macrophages but not when 

given simultaneously.12 The authors of 

this work suggested that changes in the im

mune composition of the TME, established 

over the 3-day gap, were necessary for the 

improved CAR response. Other studies 

investigated the benefits of staggered 

timing of chemo- or radiotherapies and im

mune-modulating drugs. Our perspective 

offers a comprehensive framework that de

parts from optimizing the timing of drug 

administration after drug discovery and 

instead reorients the drug discovery pipe

line toward finding promising therapies 

that would be missed if not considered as 

part of sequential administration.

In this setting, one does not presume to 

fully destroy tumors and activate immu

nity all at once, but rather to nudge the 

system into a receptive state from which 

a second drug can take you further. A 

model for the variety of sequences of 

this type, some built around checkpoint 

drugs, others accessing different modal

ities, is depicted in Figure 2B. A further 

benefit of these sequential nudges is the 

potential to reduce harmful side effects 

by avoiding dose-limiting escalation of 

single agents and therefore the com

pounded toxicities of co-administered 

drugs at high dose.

Computational methods for 

establishing milestones in disease 

resolution

The key to this approach will be to learn 

many real-world multicellular GEP transi

tions, as a community, such that we can 

rationally find the paths (Figure 2B) for 

transitioning a given dominant TME arche

type to another one and eventually for 

reaching a tumor-eliminating archetype.

The origin of the ground truth data for 

this will be a direct probing of collections 

of tumors of different archetypes. While 

treating patients with large collections of 

existing or new drugs is infeasible, the 

treatment of tumor slices13 or small frag

ments of cancer tissues14 has been vali

dated as accurately representing biolog

ical activity and responses to real-world 

perturbations (e.g., drugs). These studies 

are amenable to being performed in 

multiple cancer types, and, since they 

are amenable to scRNA-seq, they will be 

able to capture the real-world conse

quences of treating a multicellular collec

tion of cells with many drugs across all 

tumor archetypes. In this way, we can 

learn the changes that take place in multi

cellular GEPs for each archetype and for 

each drug (Figure 3A).

Computationally, the next building block 

for nudge drug prediction and application 

is in silico mapping of tissue state transition 

that occurs following a given perturbation. 

A collection of GEPs describing relevant 

TME properties is derived through a 

combination of knowledge-driven and 

data-driven methods and is then refined 

to ensure their recurrence across multiple 

patients, conditions, etc. The GEPs serve 

as a coordinate system—individual tumors 

are represented as vectors of GEP scores, 

each coordinate reflecting the activity of a 

given GEP in the tumor. Next, drug effects 

are quantified as shifts in the same GEP 

coordinate system (shown as ‘‘skyline 

plots’’ in Figure 3B). A sequence of drugs 

can then be appropriated (or designed) to 

achieve a stepwise effect such that a 

drug-susceptible GEP is treated with the 

corresponding drug only after the suscepti

ble GEP has been established (via an earlier 

administered drug; Figure 3C).

More generally, this is a question 

of representation learning, namely, 
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A

B

C

D

Figure 3. Real-world perturbation platforms to learn and test sequential nudge drug combinations 

(A) Proposed experimental layout utilizing patient-derived tissue slice models combined with multiplex scRNA-seq to study the real-world effects of drug per

turbations on a preserved TME or TME archetype. (B) Computational framework for identifying GEPs and their distribution across different cell types within the 

TME. ‘‘Skyline’’ bar plot illustrates GEP weights, with colors representing specific cell types, enabling insights into how drugs affect distinct cellular populations in 

the TME. (C) Iterative computational approach leveraging machine learning to identify TME transition states and predict nudge drug combinations for driving 

therapeutic outcomes. (D) Conceptual schematic illustrating how studying other biological processes, such as wound healing, using the same experimental and 

computational framework can uncover shared GEPs with the TME. This approach offers an additional avenue for identifying candidate drugs to shift TME ar

chetypes toward improved outcomes, including long-term remission.
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transforming the high-dimensional omics 

profiles of single cells into low-dimen

sional representations capturing mean

ingful biological patterns. The creation of 

perturbation atlases (Figure 3B) motivated 

learning representations of cell states by 

deep generative models that can then be 

used to predict the outcomes of perturba

tions,15 including unseen and combina

tion perturbations. Generative models 

can already predict perturbation re

sponses through latent-space arithmetic. 

Newer work applies single-cell foundation 

models—self-supervised neural networks 

pre-trained on vast datasets and subse

quently adapted to perform desired 

downstream tasks—to predict perturba

tion response. Building such foundation 

models for tumor archetypes should 

enable in silico predictions for unseen 

perturbations.

Another avenue for discovering ‘‘nudge 

drugs’’ will come from time-resolved anal

ysis of other biological processes, notably 

those that result in resolution, such as heal

ing of wounds, or from studies of the devel

opment of tissues or organs. In the frame

work of tissue biology, nature already 

encodes some of the fastest low-energy 

transitions. In such time-resolved studies, 

cell states can be observed as they evolve 

and co-evolve in tissues undergoing trans

formation10 (Figure 3D). Furthermore, this 

type of study has been able to discover 

component gene products of a GEP that 

can induce the next set of GEPs.10 Such 

studies illuminate how the new drugs 

needed for these types of strategies may 

be specifically defined from time-resolved 

studies. We can track nature’s trajectories 

for resolution and evolution of tissue states, 

and we can then test drugs that target or 

are the key drivers of those transitions. In 

this sense, cancer treatments may be 

learned by studying other biological transi

tions. Application and validation of the 

nudge sequences will likely take place not 

only in on-slice/on-fragment perturbations 

(Figure 3A) but also in basket clinical trials 

or in some cases via well-validated mouse 

models.

The path ahead

Throughout the history of cancer research 

and therapeutic development, patient 

outcomes have remained the gold stan

dard for evaluating drug efficacy. Howev

er, the inability to precisely characterize 

the impact of each therapeutic agent— 

particularly when it does not achieve 

remission as a monotherapy—has biased 

drug discovery toward single-agent ap

proaches. This limitation has likely re

sulted in the premature dismissal of clin

ical trial data without fully understanding 

the biological effects of a given drug.

In reality, effective cancer treatments 

must operate within highly complex bio

logical systems, where a single agent 

may not independently induce durable re

sponses. However, this does not imply a 

pure lack of therapeutic activity. Every 

drug influences a trajectory of tumor evo

lution, and without subsequent interven

tions—potentially ineffective on their own 

but critical in a sequential strategy—the 

system may ultimately revert to its original 

state or reach ineffective semi-stable 

states (such as senescence). To address 

this challenge, the integration of high- 

dimensional data and advanced compu

tational tools is essential. By leveraging in

sights from perturbation-based studies, 

we can better identify transitional states 

that render tumors more susceptible to 

follow-up therapies. This approach has 

significant clinical implications, as it could 

enable a paradigm shift in drug develop

ment—moving beyond a rigid focus on 

single-agent efficacy toward a more 

nuanced understanding of therapeutic 

synergies. Such a framework is urgently 

needed to overcome the limitations of cur

rent drug discovery strategies and to opti

mize treatment sequencing for improved 

patient outcomes.

The challenge lying ahead is general

izing the methods we describe above 

by combining two research directions. 

Namely, the field will benefit from the com

bination of (1) high-dimensional data 

collection of the organization of cell net

works and their responses to existing 

and new real-world perturbations (i.e., 

drugs) and (2) the development of compu

tational models that accurately define 

both states and their available transitions. 

Clinical trials may increasingly need to 

collect initial high-dimensional molecular 

profiling/archetyping data about a TME 

to facilitate application of these principles. 

Data sharing and the generation of 

complex datasets from intact or nearly- 

intact tissues subject to perturbation 

will be critical. So too will be the coordi

nated generation of high-dimensional 

molecular data in clinical trials that will 

provide ground-truth datasets as this 

approach is put into practice and, ulti

mately, refined.
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